28 de abr de 2010

Edmund Halley

Edmund Halley nasceu em 8 de novembro de 1656, em Haggerston, Shoreditch, Inglaterra e faleceu em 4 de janeiro de 1742, em Greenwich, Inglaterra. Interrompeu seus estudos em Oxford em 1676 para catalogar 350 estrelas no hemisfério sul, e observar o trânsito de Mercúrio pelo disco solar, passando 2 anos na ilha de Santa Helena, no Atlântico, 1200 milhas a oeste da África. Retornando à Inglaterra, realizou seus exames em Oxford, e foi logo eleito para a Royal Society.
 
O cometa brilhante que apareceu em 1664 foi observado por Adrien Auzout (1622-1691) no Observatoire de Paris, Huygens na Holanda, Johannes Hevelius (1611-1687) em Danzig, e Robert Hooke (1635-1703) na Inglaterra. Qual seria sua órbita? Tycho Brahe tinha suporto circular, Kepler dizia que era em linha reta, com a curvatura devido à órbita da Terra. Hevelius propôs que fosse elíptica. Em 1665 o francês Pierre Petit, em seu Dissertação sobre a Natureza dos Cometas propôs pela primeira vez que suas órbitas fossem fechadas, e que os cometas de 1618 e 1664 poderiam ser o mesmo cometa. Vinte anos mais tarde Halley especulou sobre o problema da gravitação em relação aos cometas. Sem conseguir resolver o problema, em agosto de 1684 ele propôs o problema a Newton.Newton disse que já havia resolvido o problema muitos anos antes, e que todos os movimentos no sistema solar poderiam ser explicados pela lei da gravitação. Um cometa na constelação de Virgem em 1680 tinha uma órbita claramente curva.
 
Em 1682 um cometa ainda mais brilhante, que mais tarde levaria o nome de Halley, teve sua órbita bem determinada por Halley, usando a teoria de Newton. Em menos de 2 anos Newton tinha escrito os dois primeiros volumes do Principia, com suas leis gerais, mas também com aplicações a colisões, o pêndulo, projéteis, frição do ar, hidrostática e propagação de ondas. Somente depois, no terceiro volume, Newton aplicou suas leis ao movimento dos corpos celestes. Foi graças ao esforço de Halley que o Principia foi publicado. Halley chegou a custear a impressão do mesmo, apesar de problemas judiciais com a herança de seu pai. Halley também cuidou da discussão com o impressor, da correção das provas, verificação dos diagramas e cálculos. Halley foi nomeado professor Savilian de geometria em Oxford em 1704.

Em 1720 foi o sucessor de John Flamsteed (1646-1719) como Astrônomo Real. No Greenwich Observatory usou o primeiro instrumento de trânsito e estabeleceu um método para determinar a longitude no mar usando observações lunares. Halley foi quem descobriu o cúmulo globular em Hércules, e em 1718 detectou o movimento próprio das estrelas. Ele produziu um estudo intensivo do magnetismo terrestre, das marés, e correntes, e fez avanços na compreensão de fenômenos meteorológicos. A primeira descrição do ciclo de evaporação, formação de nuvens e precipitação é sua.

Gás quente no centro da Galáxia


Esta imagem é o resultado da combinação de várias observações realizadas com o satélite Chandra da região central da nossa Galáxia. As diferentes cores representam raios-X de baixa (vermelha), média (verde) e alta (azul) energia. Estas observações possibilitaram a descoberta de milhares de fontes de raios-X devido à existência de buracos negros, anãs brancas e estrelas de neutrões. O resultado é a uma imensa nuvem de gás quente a estender-se ao longo do plano da nossa galáxia. A região observada situa-se na direcção da constelação do Sagitário, a cerca de 25000 anos-luz de distância.
Crédito:( NASA/CXC/UCLA/MIT/M.Muno.
Telescópio: Chandra.)

NGC 7635 - A Nebulosa da Bolha

Esta imagem obtida com o Telescópio Espacial Hubble revela uma bolha de gás quente em expansão em torno de uma estrela maciça da nossa galáxia. Esta bolha de gás está a ser moldada pela acção de ventos estelares fortes produzidos pela estrela visível à esquerda, cuja massa é cerca de 10 vezes superior à do Sol. Estes ventos estão a esculpir o material circumdante - composto de gás e poeira - formando a bolha curva que se vê na imagem. Por esta razão os astrónomos atribuíram-lhe o nome de nebulosa da Bolha. O seu tamanho é cerca de 10 anos-luz, mais do dobro da distância do Sol à estrela mais próxima. O gás luminoso que é visível no canto inferior direito é uma região densa de material que está a sofrer a acção da radiação produzida pela estrela maciça. A actividade exercida por estrelas maciças como a que é registada nesta imagem pode ser determinante para a criação de condições favoráveis à formação de novas estrelas, através da compressão do gás circundante pelos ventos estelares, ou, pelo contrário, para a destruição de alguns ambientes proto-estelares pela acção destes mesmos ventos.
Crédito: Hubble Heritage Team (AURA/STScI/NASA).

Fonte:portaldoastronomo.org

NGC 1499

Navegando à deriva no braço de Orionte da nossa Via Láctea, esta nuvem cósmica por acaso assemelha-se à costa Oeste da Califórnia dos EUA. O nosso Sol também se situa no mesmo braço, apenas a 1,500 anos-luz da Nebulosa Califórnia. Também conhecida como NGC 1499, esta clássica nebulosa de emissão mede cerca de 100 anos-luz. Brilha com a cor avermelhada característica dos átomos de hidrogénio que se recombinam com electrões, ionizados pela luz estelar energética. Neste caso, a estrela será a brilhante, quente e azul Xi Persei, para a direita da nebulosa, no centro da imagem.
Crédito: Caltech, Observatório de Palomar,
Digitized Sky Survey, Scott Kardel

Raios-X no enxame estelar jovem RCW38

Situado a cerca de 6000 anos-luz de distância da Terra, o enxame estelar RCW38 é uma região conhecida de formação de estrelas. Esta imagem, obtida com o satélite de raios-X Chandra, evidencia a presença de milhares de estrelas jovens e quentes, formadas há menos de 1 milhão de anos atrás. O Chandra detectou a emissão de raios-X proveniente da alta atmosfera de várias destas estrelas. Para além da emissão causada por cada uma das estrelas, o Chandra detectou também a presença de uma nuvem difusa de raios-X a envolver o enxame jovem. A origem desta nuvem de raios-X é ainda tema de discussão. No entanto, parece claro que a sua presença poderá alterar a química dos discos circum-estelares que existem em torno de algumas das estrelas do enxame e que, potencialmente, poderão vir dar origem a planetas.

Crédito: NASA/CXC/CfA.
Fonte:portaldoastronomo.org

Galáxias Anulares

Uma galáxia anular é uma galáxia com uma aparência tipo-anel. Este anel consiste de massivas e relativamente jovens estrelas azuis, extremamente brilhantes. A região central contém matéria relativamente pouco luminosa. Os astrónomos acreditam que as galáxias em forma de anel são formadas quando uma galáxia mais pequena passa pelo centro de outra maior. Devido às galáxias serem maioritarimente constituídas por espaço vazio, esta "colisão" raramente resulta concretamente em colisões entre estrelas. No entanto, os distúrbios gravitacionais causados por tais eventos podem iniciar uma onda de formação estelar, onda esta que se irá mover pela galáxia maior. O objecto de Hoag, descoberto em 1950 por Art Hoag, é um bom exemplo de uma galáxia de este tipo. Galáxia anular conhecida como Objecto de Hoag. No lado de fora encontra-se um anel dominado por brilhantes estrelas azuis, enquanto que no centro se encontram muito mais avermelhadas e por isso muito mais antigas. Entre as duas estruturas está uma divisão quase completamente escura. Como este objecto se formou, é ainda um mistério. Certas hipóteses incluem uma colisão galáctica há milhares de milhões de anos atrás e interacções gravitacionais perturbativas envolvendo um núcleo de forma irregular. A foto acima foi tirada pelo Telescópio Espacial Hubble em Julho de 2001. O Objecto de Hoag mede 100,000 anos-luz em diâmetro e situa-se a 600 milhões de anos-luz na constelação de Serpente. Por coincidência, visível na divisão está ainda outra galáxia anular que fica ainda muito mais distante.
Crédito: R. Lucas (STScI/AURA),
Fonte: NASA

SGR 1627-41, um zumbi cósmico

As áreas em vermelho representam os detritos da estrela que explodiu, deixando apenas uma parcela do seu núcleo, que se recusa a morrer. "Uma classe extremamente rara de zumbi estelar, cada um deles sendo o coração morto de uma estrela que se recusa a morrer." Assim os astrônomos definiram os corpos celestes inusitados que eles acabaram de estudar utilizando o telescópio espacial XMM-Newton. Por enquanto foram localizados apenas cinco desses zumbis estelares, quatro em nossa Via Láctea e um na Grande Nuvem de Magalhães. Cada um desses corpos celestes mede entre 10 e 30 quilômetros de diâmetro e contém nada menos do que duas vezes a massa do Sol. Os zumbis cósmicos são remanescentes dos núcleos de estrelas que explodiram, conhecidas como estrelas de nêutrons. O nome técnico dos zumbis estelares é SGR (Soft Gamma-ray Repeaters). O que diferencia os SGRs das estrelas de nêutrons é que eles possuem campos magnéticos até 1.000 vezes mais intensos do que os campos magnéticos dessas estrelas. É por isso que os astrônomos os chamam de magnetares. Um desses magnetares, o SGR 1627-41, foi observado há dez anos atrás, quando ele emitiu cerca de 100 pulsos de raios X em um período de seis semanas. Mas ele desapareceu subitamente, antes que um telescópio de raios X pudesse medir sua rotação. Em meados do ano passado ele voltou à vida e ficou ativo por outros quatro meses. Inicialmente não foi possível estudá-lo, porque o telescópio XMM-Newton deve manter seus painéis solares voltados para o Sol, o que impedia que ele fosse apontado para a região onde estava o magnetar. Os astrônomos então esperaram que a Terra se movesse, levando com ela o telescópio espacial, até chegar a um ponto em que o XMM-Newton pudesse ser apontado diretamente para o zumbi estelar antes que ele desaparecesse de novo. Os astrônomos verificaram que o magnetar dá uma volta em torno de seu próprio eixo a cada 2,6 segundos. "Isto o torna o magnetar com a segunda maior taxa de rotação conhecida," explica o Dr. Sandro Mereghetti, um dos autores do estudo. Os pesquisadores ainda não sabem exatamente o que faz com que esses objetos tenham campos magnéticos tão fortes. Uma das hipóteses é que eles nasceram girando ainda mais rapidamente, uma vez a cada 2 ou 3 milissegundos. As estrelas de nêutrons tradicionais nascem girando pelo menos 10 vezes mais lentamente. A rápida rotação, combinada com padrões de convecção em seu interior, dá a ele um dínamo interno extremamente eficiente, capaz de gerar esse tremendo campo magnético. Agora os astrônomos vão esperar pacientemente até que esse zumbi cósmico brilhe de novo. Então será possível medir novamente sua taxa de rotação e verificar se ele está desacelerando e se isto altera o seu campo magnético.
Fonte: Inovação Tecnológica & ESA/XMM-Newton

Estrela-bebê L1157

O telescópio espacial Spitzer, da NASA, captou pela primeira em 04 de setenbro de 2009  o nascimento de uma estrela. O retrato estelar, visto à luz infravermelho, é de uma estrela embrionária no preciso momento em que começa a contrair-se e a emitir gases para o vazio cósmico. É a imagem de como poderá ter surgido o nosso próprio sistema solar há bilhões de anos, dizem os cientistas do Laboratório de Propulsão a Jato. "A observação irá ajudar os astrônomos a compreender melhor como se formam as estrelas e os planetas."Normalmente, o nascimento das estrelas ocorre nos lugares mais escuros e empoeirados do espaço, mas o calor gerado por este nascimento permitiu a sua detecção pelas câmeras de infravermelho do Sptitzer. A imagem confirma ainda a teoria de que a formação de uma estrela é precedida de um colapso dos gases e do pó cósmico que a rodeia. A estrela-bebê, chamada L1157, está a 800 anos-luz da Terra, na constelação do Cefeu, tem dez mil anos e irá se transformar numa estrela adulta, semelhante ao nosso Sol, dentro de um milhão de anos. Na imagem em infravermelho feita pelo Spitzer, a estrela L1157 não aparece, mas é visível em um silhueta como uma espessa barra negra. Embora o Spitzer possa vasculhar a poeira dessa região, ele não consegue penetrar o invólucro em si. Em conseqüência, o invólucro aparece negro. A parte mais espessa do invólucro pode ser vista como a linha preta que cruza os jatos gigantescos. A cor branca mostra a parte mais quente dos jatos, com temperaturas por volta de 100ºC, A maior parte do material dos jatos, em laranja, está por volta de zero grau, a parte avermelhada por toda a foto é poeira, e os pontos brancos são outras estrelas, a maioria no plano de fundo.
Créditos: Spitzer & NASA
Related Posts Plugin for WordPress, Blogger...