14 de mar de 2012

. . . e assim surgiu nosso planeta!

Nada é eterno!

Temos fortes razões para acreditarmos que o próprio Universo (matéria tempo espaço) teve um início e deverá ter um fim. Hoje acreditamos que o início do Universo se deu há aproximadamente 13,7 bilhões de anos e o Sistema Solar se formou há aproximadamente 5 bilhões de anos. O Sol é uma estrela como outra qualquer. Só na nossa galáxia (agrupamento de estrelas com seus respectivos sistemas planetários; gases e poeira do qual fazemos parte) acreditamos que existam entre 200 e 250 bilhões de estrelas. As estrelas, e seus sistemas planetários, têm pelo menos uma característica em comum com os seres vivos: elas 'nascem', 'vivem' e 'morrem'. As estrelas se formam a partir da contração de imensas nuvens de gás e poeira que existem nas galáxias, entre as estrelas (3/4 da massa de uma galáxia está na forma de gás e poeira). Uma nuvem interestelar se mantêm em equilibrio durante bilhões de anos. Por um lado, a atração gravitacional de cada partícula da nuvem sobre todas as demais partículas tende a contraí-la. Por outro lado, a radiação emitida por cada uma dessas partículas, tende a expandí-la.
 
Quando esse equilíbrio é quebrado a favor da atração gravitacional, essa nuvem começa a se contrair. Analogamente à água que enche uma pia quando começa a descer para o ralo, quando essa nuvem começa a se contrair, ela começa a girar. Quanto mais se contrai, mais rápido gira (efeito pia). Do mesmo jeito que a massa da pizza que é aberta quando girada no ar, à medida que essa nuvem vai girando ela vai se achatando em um disco. Quanto mais rápido gira, mais esse disco se afina (efeito pizza). A maior massa da nuvem original vai se concentrando em uma esfera no centro desse disco. Quanto mais massa se agrupa ali, maior a pressão no interior dessa esfera. Quando essa pressão atinge um valor crítico é 'acesa a caldeira' da estrela. Chamamos caldeira de uma estrela à sua região central, onde através de reações nucleares (como se fossem bilhões de bombas atômicas explodindo simultâneamente) é obtida a energia necessária para o brilhar desse astro. O Telescópio Espacial Hubble já fotografou centenas de estrelas em processo de formação, com seus respectivos discos protoplanetários; como a da figura ao lado, que se encontra na nossa galáxia, relativamente próxima a nós, em uma grande nuvem de gás e poeira chamada Grande Nebulosa de Orion. 

 Analogamente a um filete de água que ao cair de uma torneira vai se afinando até se quebrar em gotas, também esse disco protoplanetário vai se afinando até se quebrar em anéis (efeito pingo). Nesses anéis dá-se início à formação dos planetas, luas e outros corpos, através de processos de acreção. Os minúsculos grãos de poeira da nuvem inicial, colidindo sucessivamente uns com os outros, a altíssimas velocidades, vão se aglutinando; tornando-se partículas cada vez maiores. Damos o nome de 'planetesimais' a essas partículas. Quanto maior um planetesimal, mais rápido ele cresce. Acreditamos que o cenário era esse, há quatro bilhões e meio de anos, no processo de formação de nosso sistema planetário. Esse cenário durou milhões de anos, até que alguns planetesimais alcançaram massa suficiente para se aquecerem ao ponto de se fundirem e formarem núcleos; tornando-se 'protoplanetas'. Há aproximadamente três bilhões e meio de anos o planeta Terra já estava formando a sua crosta.

As viagens no tempo

A ciência estuda seriamente, há décadas, as viagens no tempo. Agora, o tema vem sendo revisitado, com base em ideias da informação quântica. No artigo de capa da CH de março, pesquisador discute a possibilidade de viajar no tempo sob esse novo enfoque.
Cena de ‘The Time Machine’ (1960), filme de ficção científica dirigido por George Pal e baseado no livro homônimo de H. G. Wells. Embora seja estudada há décadas, a ideia de viajar no tempo ainda impõe muitos desafios à ciência. (imagem: reprodução)
De certa forma, somos todos viajantes no tempo. E isso se dá a um ritmo constante, de 60 segundos por minuto. Seguimos, assim, rumo ao futuro. Mas, agora, imagine, leitor, uma ‘mágica’ que fizesse o tempo passar mais lentamente para você que para o resto do universo. Sob o efeito desse, digamos, encanto, você veria tudo ao seu redor envelhecer em marcha acelerada, o que, efetivamente, o levaria mais rapidamente para o futuro. Em 1905, o físico de origem alemã Albert Einstein descreveu, em sua teoria da relatividade restrita, como a natureza permite esse ‘passe de mágica’. Essa teoria de Einstein prevê que o tempo passa mais lentamente para quem é acelerado a altíssimas velocidades. Essa dilatação temporal tem sido rotineiramente observada. Um modo clássico de se comprovar essa passagem mais lenta do tempo é fazer um relógio atômico ultrapreciso viajar a bordo de um avião supersônico. Quando se compara esse equipamento a um que permaneceu em terra, nota-se uma diminuta disparidade entre os tempos, que, inicialmente, eram iguais. O relógio a bordo atrasa em relação ao do solo. Apesar de a dilatação temporal ocorrer a qualquer velocidade, esse efeito só é significativo quando atingimos velocidades comparáveis à da luz no vácuo (300 mil km/s). Portanto, em princípio, para viajarmos para um futuro ‘distante’, bastaria uma nave espacial muito rápida.

Curvando espaço e tempo
Vimos que, a todo instante, estamos viajando rumo ao futuro. No entanto, a física de viagens para o passado é bem mais complicada e controversa. Para entendermos a qestão, precisaremos de alguns conceitos básicos da física. A melhor descrição que temos de como o espaço e o tempo se relacionam é a teoria da relatividade geral, de Einstein, finalizada em 1915. Apesar do nome, ela nada mais é do que uma teoria da gravitação, que substitui (ou generaliza) aquela idealizada, 250 anos antes, pelo físico inglês Isaac Newton (1642-1727). Essa substituição é necessária quando lidamos com campos gravitacionais intensos ou velocidades comparáveis à da luz. Na relatividade geral, o espaço e o tempo formam um uno indissociável com quatro dimensões, três delas espaciais (altura, largura e comprimento) e uma temporal. Mas, para nossos propósitos aqui, podemos imaginar o espaço-tempo – como os físicos denominam esse contínuo – como algo mais simples: uma daquelas camas elásticas usadas por malabaristas de circo. A relatividade geral prevê que a presença de matéria distorce o espaço-tempo, do mesmo modo que, em nossa analogia, uma grande esfera de chumbo curvaria nossa cama elástica. É justamente essa curvatura que faz com que os corpos se atraiam gravitacionalmente. Quando jogamos uma pedra para cima, ela volta ao solo, ‘escorregando’ pelo espaço-tempo distorcido pela massa da Terra. Nosso planeta, por sua vez, se move pelo espaço-tempo curvado pela massa do Sol. E assim por diante. O físico norte-americano John Archibald Wheeler (1911-2008) resumiu os fenômenos gravitacionais de forma quase poética: “A matéria diz ao espaço como se curvar. O espaço diz à matéria como se mover.” Essa distorção do espaço-tempo pode ser extrema, criando objetos curiosos, como os buracos negros, de onde nem a luz consegue escapar.

De volta ao passado?
Na década de 1930, foi descoberta outra previsão estranha da relatividade geral: a possibilidade de caminhos espaço-temporais nos levarem a nosso próprio passado. Essas trajetórias que se curvam para o passado foram chamadas curvas tipo tempo fechadas – ou, simplesmente, CTCs, do nome em inglês. Há quem ache que esse e outros mistérios do espaço-tempo só serão esclarecidos quando tivermos uma teoria que unifique os dois pilares da física contemporânea: a relatividade geral, que, como vimos, lida com os fenômenos do gigantesco e do ultraveloz, e a mecânica quântica, que trata do diminuto mundo das dimensões moleculares, atômicas e subatômicas. Apesar dos esforços de milhares de cientistas, até agora, essa unificação, do macro com o micro, ainda não foi feita – um dos problemas é a dificuldade em realizar testes experimentais conclusivos. Apesar dessa dificuldade, nos últimos anos, a mecânica quântica tem esclarecido aspectos dessas possíveis viagens no tempo. De lá para cá, tem havido muita discussão sobre o significado dessa previsão teórica. Será que ela poderia sair do papel, permitindo a construção de uma máquina do tempo? E, se isso for possível, como evitar paradoxos? O certo é que, atualmente, ninguém sabe como construir uma máquina do tempo que nos leve para o passado.
Fonte: http://cienciahoje.uol.com.br

Os hábitos alimentares das galáxias adolescentes

Esta imagem profunda de uma minúscula zona do céu na constelação da Baleia mostra a seleção de galáxias, marcadas com cruzes vermelhas, que foram utilizadas no novo rastreio feito sobre os hábitos alimentares das galáxias jovens em crescimento ao longo do tempo cósmico. Cada uma das pequeníssimas manchas, galáxias que estamos a observar tal como eram entre três e cinco mil milhões de anos depois do Big Bang, foram estudadas em detalhe utilizando o VLT do ESO e o instrumento SINFONI. Créditos: ESO/CFHT
Novas observações obtidas com o Very Large Telescope do ESO estão contribuindo de forma significativa para a compreensão de como crescem as galáxias adolescentes. No maior levantamento já feito sobre estes objetos, os astrônomos descobriram que as galáxias alteram os seus hábitos alimentares durante os anos da adolescência - o período que vai desde os 3 aos 5 bilhões de anos depois do Big Bang. No início desta fase, correntes de gás eram o lanche preferido, enquanto que mais tarde as galáxias cresceram principalmente devido a canibalismo de outras galáxias menores. Os astrônomos sabem já há algum tempo que as galáxias primordiais são muito menores que as impressionantes galáxias espirais ou elípticas que ocupam atualmente o Universo. Durante o tempo de vida do cosmos as galáxias vem aumentando de peso, mas a sua comida e hábitos alimentares permanecem ainda um mistério. Um novo levantamente de galáxias cuidadosamente selecionadas focou-se nos anos da sua adolescência - aproximadamente o período entre os 3 e os 5 bilhões de anos depois do Big Bang. Utilizando os instrumentos do Very Large Telescope do ESO, uma equipe internacional está descobrindo o que realmente aconteceu. Em mais de cem horas de observações, a equipe juntou a maior quantidade de dados detalhados sobre galáxias ricas em gás que se encontram nesta fase inicial do seu desenvolvimento.  "Existem dois modelos de crescimento de galáxias em competição: eventos de fusão violentos quando galáxias maiores comem galáxias menores, ou alternativamente um fluxo de gás mais suave e contínuo ingerido pelas galáxias. Ambos levam à formação de imensas novas estrelas," explica Thierry Contini (IRAP, Toulouse, França), que lidera este trabalho. Os novos resultados apontam para o fato de existir uma mudança na evolução cósmica das galáxias, quando o universo tinha entre 3 e 5 bilhões de anos. O crescimento devido a correntes contínuas de gás parece ter sido bastante importante nas galáxias quando o universo era muito jovem, enquanto que as fusões se tornaram mais importantes posteriormente.  "Para compreender como é que as galáxias cresceram e se desenvolveram precisamos observar com o maior número de detalhes possível. O instrumento SINFONI instalado no VLT do ESO é uma das ferramentas mais poderosas existentes no mundo para dissecar galáxias jovens e distantes. O seu papel é tão importante para nós como o microscópio é para o biólogo," acrescenta Thierry Contini. As galáxias distantes, como as do rastreio, são apenas pequenos pontos no céu muito tênues, mas a alta qualidade de imagem permite aos astrônomos fazer mapas de como as diferentes partes das galáxias se deslocam e descobrir do que são constituídas.  "A maior surpresa foi a descoberta de muitas galáxias sem rotação do gás. Estas galáxias não são observadas no universo próximo e nenhuma das teorias atuais prevê tais objetos," diz Benoît Epinat, outro membro da equipe.  "Também não esperávamos que tantas das galáxias jovens do levantamento tivessem os elementos mais pesados concentrados nas regiões periféricas - este fato é exatamente o contrário do observado nas galáxias atuais," acrescenta Thierry Contini. A equipe começa agora a explorar a enorme quantidade de dados observados. Planejam igualmente observar as galáxias com instrumentos que serão futuramente instalados no VLT, assim como pensam utilizar o ALMA para estudar o gás frio nestas galáxias. Olhando ainda mais longe, o European Extremely Large Telescope estará idealmente equipado para estender este tipo de estudos a um universo ainda mais primordial.
Fonte: http://www.eso.org/public/portugal/news/eso1212/
Related Posts Plugin for WordPress, Blogger...