31 de jul de 2013

Hubble encontra velha e misteriosa galáxia espiral

Um turbilhão cósmico impressionante foi observado pelo Telescópio Espacial Hubble, da NASA. A formação inusitada se encontra no centro da galáxia NGC 524, localizada na constelação de Peixes, a cerca de 90 milhões de anos-luz da Terra. A NGC 524 é uma galáxia lenticular. Acredita-se que essas galáxias lenticulares são um estado intermediário na evolução galáctica – não são nem elípticas nem espirais. As galáxias espirais são “de meia-idade”, com grandes braços em formato de roda, contendo milhões de estrelas. Junto com essas estrelas, se localizam grandes nuvens de gás e poeira, que, quando suficientemente densas, formam o ambiente ideal para novas estrelas nascerem.
 
Quando todo o gás se esgota ou se perde no espaço, os braços gradualmente vão desaparecendo, e consequentemente a forma espiral começa a enfraquecer. No final deste processo, o que resta é uma galáxia lenticular – um disco brilhante cheio de velhas estrelas vermelhas, rodeadas por o pouco de gás e de poeira que a galáxia foi capaz de manter. Esta imagem mostra a forma da NGC 524 em detalhe, formada pelo gás restante circundando o centro da galáxia. As observações revelam que esta galáxia ainda mantém algum movimento em espiral, explicando sua estrutura complexa.
Fonte: hypescience.com
 [Science Daily]

O mistério dos cinturões de Van Allen

Em 1958, cientistas da NASA descobriram dois círculos de partículas ao redor da Terra, batizados como “cinturões de Van Allen” (em homenagem a um dos responsáveis pelo estudo). Mais de 50 anos depois, descobriram o que “alimenta” esses círculos – algo que pode ajudar a entender fenômenos similares que ocorrem com outros planetas. Embora não sejam imponentes como, digamos, os anéis de Saturno, os cinturões podem ser perigosos: suas partículas são tão numerosas e viajam a velocidades tão altas que satélites precisam usar escudos para evitar danos em partes menos resistentes. De onde vêm essas partículas?
 
Como ganham velocidade? Havia duas hipóteses: ou elas seriam “capturadas” ao sair da magnetosfera da Terra e acelerariam no processo; ou elas seriam resultado de fenômenos que ocorrem dentro dos cinturões.
 
Em 2012, a NASA enviou duas sondas e descobriu que, a princípio, a hipótese correta é a segunda. No interior dos cinturões de Van Allen, os elétrons de atómos que os compõem são arrancados por forças elétricas, ganhando velocidade. Esses elétrons supervelozes são a parte principal dos turbilhões. Essa descoberta foi possível graças a uma tempestade solar que arrancou boa parte dos elétrons. Se eles viessem da Terra, levaria semanas até que o número voltasse ao normal. Contudo, a “recuperação” levou menos de 24 horas. Os pesquisadores acreditam que essa aceleração “interna” ocorre também em cinturões de radiação ao redor de Júpiter e Saturno.
Fonte: hypescience.com

Detectada polarização na radiação cósmica de fundo

O sinal do modo B da polarização pode favorecer cálculos relacionados a neutrinos e informações sobre inflação
A imagem mostra a anisotropia da radiação cósmica de fundo (cosmic microwave background) depois de subtraídas a anisotropia de dipolo, emissão decorrentes de poeira (emissão térmica), gás (emissão livre), e as partículas carregadas qie interagem com campos magnéticos (emissão síncrotron) na Via Láctea. A anisotropia CMB - pequenas flutuações na luminosidade do céu (um em cem mil) - foi detectada pela primeira vez pelo instrumento DMR COBE.
 
Astrônomos detectaram um sinal de polarização previsto há muito tempo nas ondulações do Big Bang. O sinal, conhecido como polarização de modo B, é provocado pelo arrasto gravitacional da matéria sobre fótons de microondas deixados pelo Big Bang. Sua detecção, feita por um telescópio de microondas no Polo Sul e postada esta semana no servidor de preprints arXiv, aumenta as esperanças de que o sinal possa ser usado para mapear a quantidade de matéria do Universo e determinar as massas de três tipos de neutrinos – na prática, usando a astronomia para atingir um dos principais objetivos da física de partículas. A detecção também sugere que pode ser possível detectar outro tipo de modo B, que poderia ser evidência de que o Universo, no momento após o Big Bang, passou por uma violenta expansão conhecida como inflação.

“O motivo de ninguém ter conseguido ver isso antes é que esse é um sinal muito pequeno – cerca de uma parte em 10 milhões”, explica Duncan Hanson, astrofísico da McGill University em Montreal, no Canadá, que liderou o trabalho, usando receptores ultra-sensíveis no Telescópio do Polo Sul (TPS), de 10 metros. Em comparação, as primeiras medidas de ondulações na radiação cósmica de fundo, divulgadas em 1992 por pesquisadores usando o satélite Cosmic Background Explorer, da Nasa, registrava diferenças de quatro partes em 100 mil.

Outros instrumentos também estão tentando detectar modos B, incluindo o experimento POLARBEAR e o Telescópio Cosmológico do Atacama (TCA), ambos em Chajnantor, no Chile. “Eles nos derrotaram, e eu tiro o chapéu para eles”, elogia Lyman Page, astrônomo da Princeton University, em Nova Jersey, e principal pesquisador do ACT. “Esse é um sinal intrinsecamente claro, e todos nós acreditamos que ele se tornará uma ferramenta importante para medir o conteúdo do Universo”. David Spergel, astrofísico teórico também de Princeton, concorda. “Essa é a primeira vez em que a polarização foi usada para identificar estruturas de grande escala no Universo”, observa ele.

O TPS, ativado em 2007, usa a radiação cósmica de fundo para mapear as posições de galáxias e aglomerados estelares. Seus sensíveis receptores de microondas foram instalados em 2012 e conseguiram detectar variações no sinal de modo B por escalas muito pequenas no céu, aponta John Carlstrom, astrofísico da University of Chicago, em Illinois, e principal pesquisador do SPT. Para usar o sinal para localizar as massas de neutrinos, que compõem uma porção desconhecida da matéria sendo mapeada, astrônomos terão que varrer um trecho do céu muito maior que os 100 graus quadrados mapeados pelo TPS.
 
Mesmo assim, Carlstrom lembra que não é impossível que telescópios determinem a massa de neutrinos nos próximos anos, antes que experimentos planejados para a física de partículas tentem fazer a mesma coisa com feixes de neutrinos na Terra. Mas o objetivo final dos experimentos de polarização de microondas não é fazer física de partículas, mas cosmologia. Eles estão perseguindo uma classe diferente de modos B “primordiais”, que acredita-se serem gerados pela rápida expansão do espaço durante a inflação. Qualquer detecção seria uma confirmação definitiva da inflação – uma das principais teorias da cosmologia – e estabeleceria sua escala de energia, o que seria útil para físicos que trabalham para desenvolver teorias da gravidade quântica.

Mas modos B primordiais existiriam como pequenas variações em grandes escalas com mais de um grau de diâmetro – grandes demais para que o TPS encontre importância estatística com o trecho celeste relativamente pequeno que ele observa. O satélite Planck, da Agência Espacial Europeia, que varre o céu inteiro, pode ser capaz de identificá-los. Também é possível que eles sejam discerníveis em conjuntos de dados menores, como o TPS, uma vez que modos B gravitacionais tenham sido mapeados e removidos, com o potencial de revelar qualquer sinal primodial abaixo. De acordo com Spergel, a observação mais recente do TPS sugere que essa abordagem para detectar modos B é um bom prospecto. “É um bom sinal que eles conseguiram medir isso a partir do solo”.

Estrela parecida com o som está sendo puxada por um exoplaneta gigante

Uma equipe de pesquisadores desenvolveu uma forma de medir as propriedades internas das estrelas - um método que oferece avaliações mais precisas dos seus planetas em órbita. Os pesquisadores examinaram HD 52265 e seu único planeta na órbita da estrela. Esta é uma rendição artística do HD 52265 e sua órbita planeta semelhante a Júpiter.Crédito: MPI para Solar System Research / Mark A. Garlick
 
Analisando as vibrações sônicas em uma estrela distante parecida com o Sol, os astrônomos podem ter calculado exatamente quão rápido estrelas giram e quanto pesa um planeta gigante alienígena próximo. Estrelas, incluindo o Sol, experimentam onda sonoras que varrem seu interior e causam pequenas flutuações rítmicas em seu brilho. Estudando essas variações, os cientistas podem entender melhor o interior das estrelas – um emergente campo científico conhecido como asterosismologia, que é semelhante à sismologia na Terra, que ajuda os geólogos a entenderem melhor o interior do nosso planeta.
 
Os cientistas usaram o satélite COROT para analisar a estrela parecida com o Sol HD 52265, localizada a mais de 90 anos-luz da Terra, na constelação de Monoceros, o Unicórnio. A estrela que tem uma massa aproximadamente equivalente a 1.2 vezes a massa do Sol e um diâmetro aproximado de 1.3 vezes o diâmetro do Sol tem entre 2.1 e 2.7 bilhões de anos de vida.
 
Oscilações repetidas nos movimentos da HD 52265 sugerem que a força gravitacional de um planeta gigante estava agindo, planeta esse que os astrônomos apelidaram de HD 52265b. A magnitude das oscilações sugere que o planeta tem uma massa de no mínimo 1.09 vezes as massa do planeta Júpiter – os cientistas não podem ter um entendimento mais preciso com base somente nas oscilações. As oscilações no brilham que os pesquisadores investigam estão ligadas com ondas nessa estrela que estão, pelo menos em parte baseada na sua taxa de rotação. Os cientistas calcularam que o interior da HD 52265 completa uma revolução a cada 12 dias, significando que ela tem uma velocidade de revolução 2.3 vezes mais rápida que o Sol.
 
“Conhecer a rotação das estrelas é importante para entender os ciclos de atividades estelares”, disse Laurente Gizon, um astrofísico do Instituto Max Planck para a Pesquisa do Sistema Solar, na Alemanha e autor principal do estudo. “Campos magnéticos nas estrelas parecidas com o Sol são mantidos pela rotação e pela convecção”.
 
Descobrir a maneira com a qual a estrela HD 52265 rotaciona também fornece pistas sobre como o planeta HD 52265b está orientado em sua direção, assumindo que o equador da estrela esteja alinhado com o do planeta, como tipicamente acontece com os planetas no Sistema Solar. Quando esses dados são combinados com as informações sobre a magnitude das oscilações que o planeta exerce na estrela, a massa do planeta é de aproximadamente 1.85 vezes a massa do planeta Júpiter, calcularam os pesquisadores.
 
“A asterosismologia é uma técnica muito poderosa para se poder entender e caracterizar os exoplanetas por completo”, disse Gizon. No futuro, a missão PLATO da Agência Espacial Europeia poderá usar a asterosismologia para analisar uma multitude de estrelas e planetas. “A decisão na seleção da missão é esperada para que aconteça no começo de 2014”, disse Gizon.
Fonte: http://www.space.com

Telescópio da Nasa capta exoplaneta passando diante de 'estrela-mãe'

Planeta tem tamanho equivalente a Júpiter, diz agência espacial.Sistema planetário está localizado a 63 anos-luz da Terra. 
Concepção artística mostra o planeta HD 189733b passando diante de estrela; no detalhe do canto superior direito, observação de raios-X (Foto: Divulgação/Nasa/CXC/SAO/K.Poppenhaeger) 
 
O telescópio Chandra, da agência espacial americana (Nasa), fez observações de um exoplaneta com tamanho equivalente a Júpiter passando diante de sua "estrela-mãe". É a primeira vez que este alinhamento é registrado com detecção de raios-X, afirma a agência, em nota. Os exoplanetas são planetas localizados fora do Sistema Solar. O planeta observado, de nome HD 189733b, tem tamanho equivalente a Júpiter mas está em uma órbita próxima à sua estrela - 30 vezes mais próximo do que a Terra está do Sol.
 
O sistema que inclui o exoplaneta e a estrela está a 63 anos-luz da Terra. O HD 189733b completa sua órbita em torno da estrela a cada 2,2 dias. A Nasa indica ainda que a temperatura do planeta deve ser elevada, devido à proximidade com a estrela. Além de permitir estudar melhor os exoplanetas, os dados obtidos ajudam a entender como a passagem do planeta afeta sua "estrela-mãe" e vice-versa. "Poder estudar esta movimentação usando raios-X é importante porque revela novas informações sobre as propriedades dos exoplanetas", ressalta a cientista Katja Poppenhaeger, do Centro de Astrofísica Harvard-Smithsonian.
Fonte: G1

Origem de buraco negro tem nova interpretação

Será que buracos negros abandonam suas casas e vão para outras galáxias? Se for o caso, uma galáxia chamada NGC 1277 pode abrigar um fugitivo em seu núcleo.
NGC 1277: Imagem do Telescópio Espacial Hubble da galáxia que pode ter confiscado o buraco negro supermassivo de outra galáxia.
 
Em 2012, astrônomos descobriram um buraco negro supermassivo em seu centro, com a massa de 17 bilhões de sois – o mais massivo conhecido. Normalmente, um buraco negro tão enorme só seria encontrado em uma galáxia muito maior, o que sugere algo incomum no passado da NGC 1277. Dois astrônomos têm uma ideia: e se o buraco negro foi capturado após ser ejetado de uma colisão galáctica há bilhões de anos?

Na verdade, o buraco negro pode ser o que restou de uma galáxia ainda maior que fica nas proximidades. Há bilhões de anos, duas galáxias – cada uma carregando um buraco negro em seu núcleo – se chocaram para formar uma galáxia massiva chamada de NGC 1275. Durante a colisão, os buracos negros centrais se atraíram, se fundiram, e recuaram para o espaço intergaláctico. O recém-nascido buraco negro sem casa vagou pelo aglomerado galáctico de Perseu até a NGC 1277 passar perto o suficiente para atraí-lo gravitacionalmente. Isso é especulação, mas é uma história divertida”, declara Gregory Shields, astrônomo da University of Texas, em Austin, e principal autor de um artigo publicado no periódico The Astrophysical Journal Letters propondo esse cenário. “Você não precisa inventar nenhuma física nova. Você só precisa ter a sorte de encontrar uma galáxia menor”.

Simulações de computador mostram que quando dois buracos negros se fundem, a radiação irregular de energia gravitacional dá um chute no buraco negro resultante. No caso de buracos negros supermassivos encontrados no centro de galáxias, esse chute pode ejetar o buraco negro final a uma velocidade de até cinco mil quilômetros por segundo – rápido o bastante para expulsá-lo de sua própria galáxia. Inspirado por essas simulações, Shields começou a trabalhar com Erin Bonning, astrofísica da Quest University Canada, para procurar buracos negros órfãos. Nós consideramos a possibilidade de que quando um buraco negro é ejetado dessa forma, ele pode arrastar um longo disco de gás consigo e continuar a se alimentar desse gás mesmo enquanto voa para longe da galáxia original”.

O conjunto de buraco negro e gás formaria um quasar flutuando livremente: um brilhante motor de radiação movido a gás superaquecido espiralando ao redor de um buraco negro massivo. Apesar de eles ainda não terem encontrado um quasar andando entre galáxias, a ideia nunca foi abandonada. “É um processo tão fascinante que você simplesmente continua pensando nele”, comenta Shields.

Quando a descoberta de um buraco negro muito grande na NGC 1277 foi anunciada em 2012, Shields ficou atento. “Quando eu li aquele artigo, a ideia simplesmente surgiu na minha mente: aquele buraco negro se formou em uma galáxia maior e foi chutado dela”. Karl Gebhardt, outro astrofísico da University of Texas, Austin, e co-descobridor do buraco negro da NGC 1277, está um pouco cético: “Essa é uma ideia muito interessante... mas vai precisar de muita sorte”. Para que o cenário de Shields funcione, três fenômenos precisam ocorrer: os buracos negros precisam se fundir, o buraco negro resultante precisa ser chutado de outra galáxia (a NGC 1275) e então ser capturado pela NGC 1277.

Cada um desses eventos baixa probabilidade de ocorrer.

Mas em um Universo tão grande, até coisas improváveis acontecem de vez em quando. “Essa galáxia é estranha”, observa Gebhardt, “então o fato de que uma possível explicação também é estranha pode não ser tão surpreendente”. Para descobrir o quanto a explicação é estranha será necessário observar muitas outras galáxias. “Se não houver outra galáxia com um buraco negro tão massivo [quanto esse]”, explica Gebhardt, “então algo com uma probabilidade muito baixa poderia ser uma explicação válida”. Se, no entanto, descobrirmos que buracos negros enormes não são tão incomuns, devemos pensar em outra explicação.

A NGC 1277 pode já ter sido uma galáxia maior, e pode ter tido muitas de suas estrelas e gás roubados durante uma colisão próxima. Ou talvez o buraco negro tenha sido ejetado a partir de uma grande galáxia e arrastado o núcleo dessa galáxia consigo. Todos os cenários em que astrônomos conseguem pensar, porém, começam com o buraco negro surgindo em uma galáxia muito maior. Descobrir de onde vêm esses buracos negros colossais pode levar a pistas sobre como galáxias evoluem. Há algum tempo astrônomos sabem que buracos negros supermassivos e suas galáxias hospedeiras exercem influência um sobre o outro.

Conforme galáxias aumentam devido a colisões sucessivas, os buracos negros crescem.

Um buraco negro massivo pode se acender como um quasar ao sugar gases que teriam formado novas estrelas. O gás então dispara jatos com milhares de anos-luz de comprimento, reduzindo a formação estelar da galáxia.  As pessoas estão vendo a simbiose de um buraco negro, a energia que ele produz como um quasar, e a evolução da própria galáxia como uma parceria que pode ter influências significativas de uma forma ou de outra”, finaliza Shields. “Então nós queremos entender como buracos negros chegam às galáxias”.

30 de jul de 2013

Uma Galáxia Espiral Coroada Por Uma Estrela

A spiral galaxy crowned by a star
Outro tesouro desenterrado dos arquivos do Hubble, essa bela imagem mostra uma galáxia espiral denominada NGC 4517. Um pouco maior que a Via Láctea, ela é vista de lado e coroada por uma estrela bem brilhante. A estrela está na verdade muito mais perto de nós do que a galáxia, explicando assim, porque ela aparece tão grande e brilhante nessa imagem. A NGC 4517 está localizada a aproximadamente 40 milhões de anos-luz de distância da Terra na constelação de Virgo (A Virgem).
 
Ela tem um centro brilhante, mas isso não é visto nessa imagem do Hubble. Sua orientação tem levado a incluí-la em muitos estudos de aglomerados globulares, conjuntos de estrelas que orbitam o centro de galáxias como satélites. Essa galáxia foi descoberta em 1784 por William Herschel, que descreveu essa região como tendo “uma bela estrela brilhante situada exatamente a norte do centro de extenso raio leitoso”.
 
Claro que o “raio leitoso” visto por Herschel é na verdade essa galáxia espiral, mas com seu equipamento de observação no século 17 ele só poderia ter descrito assim, o que ele observou como sendo uma estrutura difusa e borrada abaixo da estrela muito mais brilhante. Essa imagem é composta da luz visível e infravermelha adquirida pelo Hubble. Uma versão dessa imagem foi inscrita na competição de processamento de imagens do Hubble conhecida como Hubble’s Hidden Treasures pelo competidor Gilles Chapdelaine.
Fonte: http://www.spacetelescope.org

Messier 100: Esplendor grandioso

[gal%25C3%25A1xia%2520M100%255B4%255D.jpg]
As galáxias em espiral são geralmente objetos esteticamente muito apelativos, ainda mais quando nos aparecem de frente. Esta imagem mostra um exemplo particularmente bonito: trata-se da galáxia em espiral Messier 100, situada a cerca de 55 milhões de anos-luz de distância, na região sul da constelação da Cabeleira de Berenice. Para além dos braços em espiral extremamente bem definidos, a Messier 100 apresenta também no seu centro, uma estrutura em barra muito ténue, o que permite classificá-la como sendo do tipo SAB. Embora não seja muito óbvia a partir desta imagem, os cientistas confirmaram efectivamente a existência da barra ao observar a galáxia a outros comprimentos de onda.

Esta imagem muito detalhada mostra as características principais que se esperam de uma galáxia deste tipo: enorme nuvens de hidrogénio gasoso, que brilham em zonas avermelhadas quando re-emitem a energia absorvida, emitida por estrelas de grande massa recentemente formadas; o brilho uniforme das estrelas mais velhas amareladas situadas próximo do centro; e as manchas negras de poeira que se entrelaçam por entre os braços da galáxia. A Messier 100 é um dos membros mais brilhantes do enxame da Virgem, enxame este constituído pelas galáxias mais próximas da Via Láctea, e que contém mais de 200 galáxias, incluindo espirais, elípticas e irregulares. Esta fotografia é a combinação de imagens obtidas com o instrumento FORS, montado no Very Large Telescope do ESO, no Observatório do Paranal, no Chile, com os filtros vermelho (R), verde (V) e azul (B).
Fonte: ESO

A cara em mudança do gelado Quaoar

 Impressão de artista de Quaoar e da sua pequena lua Weywot. A imagem tenta mostrar a cor moderadamente avermelhada de Quaoar. Crédito: NASA/JPL-Caltech/R. Hurt (SSC-Caltech)

Plutão não se pode queixar. Embora já não seja um planeta principal, pelo menos consegue ser o amado rei dos anões. A vida não é tão simples para Quaoar, outra bola de rocha e gelo à deriva nas periferias do Sistema Solar. Em tempos foi o segundo no comando de Plutão, o segundo maior objecto na cintura de Kuiper, um anel de planetas anões e outros corpos para lá da órbita de Neptuno. Mas mundos recém-descobertos e maiores continuam aparecendo. Entretanto, o tamanho de Quaoar (pronuncia-se "kwawar") foi revisto em baixa, graças a novas e melhoradas medições. O mundo estranho foi praticamente esquecido.
 
Agora Quaoar pode ter perdido a honra que lhe resta, como o objecto mais denso na cintura de Kuiper. As últimas revisões do seu tamanho, densidade e forma sugerem que o objecto negligenciado tem muito mais em comum com os seus vizinhos do que se suspeitava. Isso pode ser bom - o seu novo e maior tamanho potencialmente aumenta a sua elegibilidade de adesão ao clube de planetas anões, formado como resultado da despromoção de Plutão. Só que Quaoar parece ser um elipsoide, o que lhe poderá negar entrada - até os planetas anões têm que ser esféricos.
 
Com o nome de um deus-criador nativo americano, Quaoar orbita a 6,5 mil milhões de quilómetros do Sol. O seu tamanho coloca-o perto do limite do que o Telescópio Espacial Hubble pode ver, o que torna difícil obter mais detalhes. Trabalhos anteriores vasculharam as imagens desfocadas do Hubble e fizeram modelos de Quaoar e da sua única lua, Weywot, com base na noção de que ambos os objectos seriam mais ou menos como as luas de Úrano. Essa pesquisa indicou que Quaoar tem cerca de 900 km de largura e é tão denso que pode ser principalmente rocha - incomum para a cintura de Kuiper, onde a maioria dos objectos são misturas de gelo e poeira.
 
Mas imagens infravermelhas por telescópios modernos, tais como o telescópio espacial Herschel, e outras observações, mostraram que a composição da superfície de Quaoar não é nada como as das luas uranianas. Por isso, Felipe Braga-Ribas do Observatório Nacional do Rio de Janeiro, Brasil, e colegas tomaram um rumo diferente.
 
Em 2011 e 2012, várias equipas observaram Quaoar a passar em frente de uma estrela, fazendo com que diminuísse de brilho durante um curto período de tempo. Ao cronometrar cuidadosamente as observações e ao registar as mudanças na luz da estrela, estas ocultações proporcionaram algumas das medições mais precisas do tamanho e forma do distante Quaoar. A equipa de Braga-Ribas calcula que Quaoar tem na realidade 1138 km de largura - um pouco maior que o planeta anão Ceres - e que tem uma densidade de apenas 1,99 gramas por centímetro cúbico, o que pode torná-lo mais numa bola de neve suja como Plutão.
 
Mas há um senão. As ocultações fazem mais sentido se Quaoar for um elipsoide alongado incorporando ou uma montanha muito grande ou uma cratera profunda. O problema é que nenhuma destas características deve perdurar por muito tempo se o objecto for constituído por uma mistura de gelo e rocha. "Quando interpretamos os valores, Quaoar parece disparatado - é completamente irracional," afirma Wesley Fraser do Instituto Herzberg para Astrofísica em Victoria, Colúmbia Britânica, Canadá, que não fez parte da equipa de pesquisa.
 
Por isso a equipa também examinou o que seria necessário para uma forma mais suave coincidir com os dados. Assumindo pequenos erros de temporização que estão maioritariamente dentro dos limites esperados, um inexpressivo elipsoide, mas mais redondo, em forma de ovo, também pode explicar os dados. A equipa de Braga-Ribas também relata a inexistência de uma atmosfera em Quaoar. Isto é algo que Fraser acha suspeito. "Espera-se que a maioria dos grandes objectos na cintura de Kuiper tenha atmosferas de algum tipo," afirma. "Eles têm gelos moderadamente voláteis nas suas superfícies que são relativamente quentes o suficiente para produzir atmosferas ligeiras e frágeis.
 
No trabalho submetido à revista Astrophysical Journal Letters, Fraser e colegas apresentam os dados de quando Quaoar passou em frente de uma estrela em meados de Julho, a partir da perspectiva do telescópio Gemini Sul, no Chile. Eles descartam uma atmosfera de nitrogénio ou dióxido de carbono, mas pensam que é ainda possível uma atmosfera de metano puro, e que uma cobertura fofa e difusa de metano poderia encaixar nos resultados da ocultação de Braga-Ribas. Ou Quaoar tem um fino invólucro de gás, ou está de algum modo a desafiar os nossos conhecimentos da química da cintura de Kuiper.
 
O que é claro das várias observações é que Quaoar não é perfeitamente redondo. Mas quando a União Astronómica Internacional redefiniu o termo planeta, também decidiu que os planetas anões precisam de ser massivos o suficiente para que a sua gravidade os torne pelo menos quase redondos. Será então possível que a forma de ovo de Quaoar o exclua do clube?
 
"Ceres também não é perfeitamente redondo. Isto sugere que a definição da UAI pode ter de ser reexaminada," realça Fraser. "Eu inclino-me a chamá-lo de anão, e alguém terá que me convencer do contrário."
Fonte: Astronomia On-Line

29 de jul de 2013

Estrelas de nêutrons podem ajudar a entender a Relatividade Geral e leis da Física

Recentemente, os cientistas descobriram um meio de compreender o funcionamento das estrelas de nêutrons. Elas são corpos tão densos que conseguem embalar a massa de vários sóis em um espaço limitado. Existe uma relação universal que liga um trio de propriedades relacionadas com a rapidez com que a estrela gira e o quanto o seu formato se deforma. Esta relação pode ajudar os astrônomos a compreender à Física dentro de núcleos de estrelas de nêutrons, e distinguir estas estrelas de seus “primos” ainda mais estranhos, as estrelas de quarks.
 
As estrelas de nêutrons nascem quando estrelas massivas ficam sem combustível para a fusão nuclear, isto é, essas estrelas são um dos possíveis estágios finais na vida de uma estrela. Elas são criadas quando estrelas com massa maior a oito vezes a do Sol esgotam sua energia nuclear e passam por uma explosão de supernova. Eventualmente, a pressão é tão grande que os átomos não conseguem reter a sua estrutura e colapsam. Prótons e elétrons fundem-se uns aos outros, produzindo nêutrons, bem como partículas chamadas neutrinos leves.
 
O resultado final é uma estrela cuja massa é composta por 90% de nêutrons. As estrelas de quark são objetos ainda mais densos do que as estrelas de nêutrons, onde até mesmo os nêutrons não conseguem ‘sobreviver’ e acabam “derretendo” em seus quarks constituintes. A partir de observações atuais ainda não é possível, segundo os pesquisadores, dizer definitivamente a diferença entre as estrelas de nêutrons e quarks. No entanto, a nova relação encontrada por Nicolas Yunes, físico da Montana State University, e seu colega Kent Yagi, poderia ajudar a distinguir os dois corpos superdensos.
 
Os cientistas descobriram que, para todas as estrelas de nêutrons, há uma relação entre três grandezas que definem o quão rápido a estrela pode girar e a facilidade na qual a sua forma se deforma. Essa relação significa que, se uma destas quantidades puder ser medida, as outras grandezas podem ser deduzidas. Embora, a princípio, os pesquisadores acreditassem que essas propriedades já estivessem conectadas, eles não perceberam que essa relação de fato era verdadeiramente possível. É semelhante, de acordo com os cientistas, com a relação conhecida por buracos negros, que são ainda mais densos do que estrelas de nêutrons e quarks. Yunes disse:
 
"Para os buracos negros existe uma relação definitiva bem conhecida, mas que faz sentido, porque os buracos negros não têm estrutura interna. Nós esperávamos que isso não fosse verdade, uma vez que você tem objetos que têm estrutura". A compreensão dessa relação poderia ajudar os cientistas a estudarem a relatividade geral e as leis da física em um forte campo gravitacional.
Fonte: Jornal Ciência

Nasa captura 'buraco' gigante na atmosfera do Sol

Buraco no Sol foi registrado pela sonda Soho, da Nasa Foto: Nasa / Divulgação
 
Uma sonda da Nasa e da Agência Espacial Europeia (ESA, na sigla em inglês) registrou um buraco gigante na atmosfera solar, na área do polo norte do Sol. A sonda Observatório Solar e Helioscópico (Soho, na sigla em inglês) capturou a imagem do buraco gigantesco no dia 18 de julho. A Nasa afirma que os buracos, chamados de coronais, são regiões escuras de baixa densidade da camada mais externa da atmosfera solar, chamada de corona. Estes buracos têm pouco material solar, temperaturas mais baixas e, por isso, aparecem mais escuros nas imagens.
 
Os buracos coronais são ocorrências típicas do Sol, mas costumam aparecer em outros lugares e com mais frequência em momentos diferentes do ciclo de atividade solar, que dura cerca de 11 anos. O ciclo de atividade solar atualmente está se encaminhando para o chamado máximo solar, um pico na atividade que deve ocorrer no final de 2013. Durante esta parte do ciclo, o número de buracos coronais diminui. No pico da atividade solar, os campos magnéticos no Sol mudam e novos buracos coronais aparecem perto dos polos.
 
 O número destes buracos então aumenta e eles crescem de tamanho, se estendendo para além dos polos, enquando o ciclo solar volta para o mínimo de atividade novamente. Os buracos são importantes para a compreensão do clima no espaço, pois eles são a fonte de ventos de alta velocidade com partículas solares, que são expelidos do Sol três vezes mais rápido do que os ventos solares vindos de outros lugares. Ainda não se sabe a causa dos buracos coronais, mas eles estão correlacionados a áreas do Sol onde os campos magnéticos aumentam e sobem, não conseguindo cair de volta para a superfície do Sol, como fazem em outros lugares.
Fonte: Terra

Os exoplanetas mais velhos já descobertos

Dois grandes planetas do tamanho de Júpiter, descobertos em 2012, orbitando uma estrela localizada a 375 anos-luz de distância da Terra, que irá em breve se transformar em uma gigante vermelha (imagem acima), estão entre os mundos alienígenas mais velhos já descobertos de acordo com os cientistas do Max-Planck Institute for Astronomy em Heidelberg, na Alemanha. “A própria Via Láctea ainda não está completamente formada”, disse Johny Setiawan. Durante uma pesquisa usando a técnica de velocidade radial, onde os astrônomos observam por oscilações periódicas na luz da estrela devido a força gravitacional de mundos que ela o orbitam, Setiawan e seus colegas descobriram as assinaturas de dois planetas orbitando a estrela, chamada de HIP 11952.
 
Com uma idade estimada de 12.8 bilhões de anos, a estrela hospedeira – e seus planetas – muito provavelmente se formaram no alvorecer do universo, menos de um bilhão de anos depois do Big Bang. Com base no cálculo feito pela equipe, um planeta alienígena é quase tão massivo quanto Júpiter e completa a sua órbita em aproximadamente sete dias.
 
O outro exoplaneta tem aproximadamente três vezes a massa de Júpiter e tem um período orbital de nove meses e meio. “Normalmente os planetas se formam pouco depois da formação da estrela”, disse Setiawan. “Planetas de segunda geração podem também se formar depois da estrela morta, mas isso ainda se encontra em debate”. A descoberta indica que a formação do planeta no início do universo foi possível apesar do fato das estrelas existentes naquela época possuírem uma deficiência de elementos mais pesados do que o hidrogênio e o hélio, o que vai contra a vastamente aceita teoria do modelo do crescimento, que diz que os elementos mais pesados são necessários para formar os planetas. No caso da HIP 11952, sua abundância em ferro é somente um por cento daquela existente no Sol.
 
A teoria do crescimento tem por muito tempo tido o suporte de observações: A maior parte das estrelas que abrigam planetas e que foram descobertas até o momento são relativamente jovens e possuem uma quantidade moderada de metais, mas Setiawan, diz que os astrônomos podem pensar que o modelo de crescimento esteja correto pois os caçadores de planetas usando os dados da missão Kepler têm observado na maior parte das vezes estrelas jovens e parecidas com o Sol. Para verificar essa questão é necessário fazer uma busca de planetas ao redor de estrelas mais velhas e pobres em metal, completa Setiawan.

Terceira supernova brilhante em 11 anos explode na M74

A galáxia M74 não somente pode ser considerada uma espiral quase que perfeita como também é um local repleto de atividades de supernovas, em onze anos 3 supernovas explodiram nessa galáxia. O mais novo objeto designado pelo singelo nome de PSN J01364816+1545310, foi descoberto brilhando com uma magnitude de 12.4 pelo projeto conhecido como Lick Observatory Supernova Search, no Observatório Lick perto de San Jose, na Califórnia. A sigla PSN, significa “possible supernova” e o número a frente da sigla relata a posição do objeto do céu em coordenadas equivalente ao que conhecemos como latitude e longitude.
 
A M74 é uma galáxia espiral clássica com braços que parecem ser soprados do núcleo brilhante repleto de estrelas. Localizada a 32 milhões de anos-luz de distância na constelação de Pisces, a M74 contém algo em torno de 100 bilhões de estrelas. Os braços espirais são pontuados com densos aglomerados estelares e com nuvens rosas de gás hidrogênio fluorescente.
 
A pesquisa do Lick usa um telescópio totalmente automatizado ou robótico de 76 cm dedicado especificamente para vasculhar o céu procurando por novas supernovas. Ele registrou a última explosão estelar na M74 no dia 25 de Julho de 2013. Anteriormente duas supernovas já haviam explodido nessa galáxia, a SN 2002ap e a SN 2003gd, com magnitudes 12 e 13 respectivamente. Uma equipe de astrônomos usando um espectrógrafo no Faulkes Telescope South em Siding Spring, na Austrália, fizeram um estudo separado da luz da supernova e agora sabem exatamente o que explodiu.
 
Tudo indica que essa supernova se originou de uma estrela supergigante com no mínimo 8 vezes a massa do Sol. Após uma vida relativamente curta de milhões de anos, a supergigante esgotou seu combustível. Com o gás esgotado e com nenhuma nova energia sendo produzida em seu núcleo para contra atacar a força da gravidade, a estrela implodiu, enviando uma onda de choque em direções opostas. Chamada de uma explosão de supernova do Tipo II, a explosão enviou o material estelar para o espaço a uma velocidade aproximada de 70.000 km/s.
 
O mais espetacular, é que uma poderosa explosão de supernova pode lançar energia equivalente àquela produzida pelo Sol em todos os seus 10 bilhões de anos de vida. Enquanto fotos e medidas adicionais chegam, astrônomos amadores com telescópios de 8 polegadas ou maiores, não estão tendo problemas em espiar a supernova. Essa supernova localiza-se a 93”a leste e a 135”a sudeste do núcleo da galáxia. Enquanto a M74 é relativamente brilhante e aparece de modo espetacular nas imagens de longa exposição, em telescópios menores ela é apagada e sem brilho. Seja paciente para observar a galáxia. Se você esperar um pouco mais, quando a Lua vai minguando o que ajudará nas observações.

26 de jul de 2013

Lançando nova luz sobre os objetos mais brilhantes do Universo

Impressão de artista de ULAS J1120+0641, um quasar alimentado por um buraco negro com uma massa de 2 mil milhões de Sóis.Crédito: ESO/M. Kornmesser

Os quasares estão entre os objectos mais brilhantes, mais antigos, mais distantes e mais poderosos do Universo. Alimentados por buracos negros supermassivos no centro de galáxias gigantescas, os quasares podem emitir enormes quantidades de energia, até mil vezes a produção total das centenas de milhares de milhões de estrelas de toda a nossa Via Láctea. Astrofísicos da Universidade de Dartmouth, no estado americano de New Hampshire, escreveram um artigo que será publicado na revista The Astrophysical Journal, que relata descobertas baseadas em observações de 10 quasares. Eles documentaram o imenso poder da radiação quasar, que se estende por muitos milhares de anos-luz, até aos limites da galáxia do quasar.
 
"Pela primeira vez, somos capazes de ver a real extensão em que estes quasares e os seus buracos negros podem afectar as suas galáxias, e vemos que é apenas limitada pela quantidade de gás na galáxia," afirma Kevin Hainline, associado pós-doutorado de pesquisa em Dartmouth. "A radiação excita o gás por todo o percurso até às margens da galáxia e só pára quando já não existe mais gás."
 
A radiação libertada por um quasar cobre todo o espectro electromagnético, desde ondas de rádio até micro-ondas a baixas frequências, passando por infravermelho, ultravioleta, raios-X, até raios gama de alta frequência. Um buraco negro central, também chamado núcleo galáctico activo, pode crescer ao engolir material do gás interestelar circundante, libertando energia no processo. Isto leva à criação do quasar, que emite radiação que ilumina o gás presente em toda a galáxia.
 
"Se pegarmos nesta poderosa e brilhante fonte de radiação no centro da galáxia e detonarmos o gás com a sua radiação, ele é excitado da mesma forma que o néon nas lâmpadas, produzindo luz," afirma Ryan Hickox, professor assistente do Departamento de Física e Astronomia em Dartmouth. "O gás vai emitir frequências muito específicas de luz que só um quasar pode produzir. Esta luz funciona como um rasto que fomos capazes de usar para seguir o gás excitado pelo buraco negro até grandes distâncias. Os quasares são pequenos em comparação com uma galáxia, como um grão de areia numa praia, mas o poder da sua radiação pode estender-se até aos limites galácticos e além.
 
A iluminação do gás pode ter um efeito profundo, já que o gás que é iluminado e aquecido pelo quasar é menos capaz de entrar em colapso sob a sua própria gravidade e formar novas estrelas. Assim, o minúsculo buraco negro central e o seu quasar podem retardar a formação estelar em toda a galáxia e influenciar a forma como esta cresce e muda ao longo do tempo.
 
"Isto é emocionante porque sabemos, a partir de um número de argumentos diferentes e independentes, que estes quasares têm um efeito profundo nas galáxias onde vivem," afirma Hickox. "Existe muita controvérsia sobre o modo como realmente influenciam a galáxia, mas agora temos um aspecto da interacção que se pode alargar à escala de toda a galáxia. Ninguém tinha visto isso antes. Hickox, Hainline e co-autores basearam as suas conclusões em observações feitas com o SALT (Southern African Large Telescope), o maior telescópio óptico do Hemisfério Sul. As observações foram realizadas usando espectroscopia, na qual a luz é dividida nos comprimentos de onda que a compõem.
 
"Para este tipo particular de experiência, está entre os melhores telescópios do mundo," afirma Hickox. Também usaram dados do telescópio espacial WISE (Wide-field Infrared Survey Explorer) da NASA, que fotografou todo o céu no infravermelho. Os cientistas usaram observações no infravermelho porque dão uma medida particularmente fiável da produção total de energia do quasar.
Fonte: Astronomia On-Line

A tromba do elefante em IC 1396

Créditos de imagem e direitos autorais: Juan Lozano de Haro
Como uma ilustração num conto galáctico, a Nebulosa da Tromba do Elefante é soprada através da nebulosa de emissão e do jovem complexo de aglomerado estelar IC 1396, no alto e na parte distante da constelação de Cepheus. Claro, a tromba de elefante cósmica tem mais de 20 anos-luz de comprimento. Essa composição, mostrada acima foi registrada através de filtros de banda curta que transmitem a luz dos átomos ionizados de hidrogênio, enxofre, e oxigênio na região. A imagem resultante destaca as brilhantes cadeias que delimitam os bolsões de gás e poeira interestelar. Essas nuvens filamentares escuras, embebidas, contém o material bruto para a formação de estrelas e esconde protoestrelas dentro da poeira cósmica escura. Localizada a aproximadamente 3000 anos-luz de distância, o relativamente apagado complexo IC 1396, cobre uma região no céu que se espalha por mais de 5 graus. Esse mosaico de detalhe cobre um campo de visão de 2 graus, aproximadamente o tamanho de 4 Luas Cheias.
Fonte: http://apod.nasa.gov/apod/ap130726.html

Companhia Privada Pretende Instalar Telescópio na Lua em 2015

A exploração espacial privada deve ir para a Lua e logo. A primeira missão mundial para o polo sul ensolarado da Lua colocará um telescópio privado no pico lunar da Montanha Malapert no começo de 2015. Moon Express, uma startup privada de comércio lunar, e a International Lunar Observatory Association, uma fundção sem fins lucrativos para a observação da Lua, se juntaram para colocar o International Lunar Observatory, uma antena de rádio telescópio com 2 metros de diâmetro, na Lua, para observar a galáxia sem a interferência da atmosfera da Terra que absorve determinados tipos de radiação.
 
O ILOA planeja começar pequeno, estabelecer uma presença científica na Lua e eventualmente mover a exploração humana para lá. Uma missão preliminar com um telescópio menor será lançada em 2015. O observatório completo, programado para chegar em 2016, poderá realizar, pesquisa científica, transmissão comercial e permitir a educação Galaxy 21st Century e a ciência cidadã na Lua, de acordo com o comunicado de imprensa feito pelas duas organizações. Seu acesso e controle serão disponíveis via interne para o público em geral, bem como para os pesquisadores.
 
A Moon Express também enviará um pequeno rover que irá prospectar a Lua por recursos, incluindo metais, minerais e água, que poderiam ser extraídos da superfície e um dia até mesmo vendidos na Terra. Apesar do tempo para colocar um observatório na Lua ser descrito como um pouco ambicioso – mesmo pelo CEO Bob Richards do Moon Express – o Moon Express está também participando do chamado Lunar XPrize do Google, que tem por objetivo colocar na Lua um rover em 2015.
Fonte: http://blog.cienctec.com.br/

IRIS Telescópio da NASA oferece o primeiro vislumbre da misteriosa atmosfera do Sol

sdo_iris_labels

O momento quando um telescópio abre suas portas pela primeira vez culmina de anos de trabalhos e planejamento – enquanto que simultaneamente estabelece as bases para uma série de pesquisas e respostas que ainda estão por vir. Esse é um momento de uma animação e talvez com um pouco de incerteza. No dia 17 de Julho de 2013, uma equipe internacional de cientistas e engenheiros que apoiaram e construíram o Interface Region Imaging Spectrograph da NASA, ou IRIS, todos viveram esse momento. Enquanto que a nave orbitava a Terra, a porta do telescópio se abriu para observar as misteriosas camadas inferiores da atmosfera do Sol e os resultados foram realmente fantásticos. Os dados são claros e nítidos, mostrando com detalhes sem precedentes essa região pouco observada.
 
“Essas belas imagens do IRIS irão nos ajudar a entender como a atmosfera inferior do Sol pode ser responsável por uma série de eventos ao redor do Sol”, disse Adrian Daw, cientista da missão para o IRIS no Goddard Space Flight Center da NASA em Greenbelt, Md. “Toda vez que você observa algo em mais detalhe do que você já viu antes, isso abre novas portas para o entendimento. Existe sempre o potencial para elementos surpresas”.
 
Enquanto a porta do telescópio se abria no dia 17 de Julho de 2013, o único instrumento do IRIS começava a observar o Sol com um detalhe excepcional. As primeiras imagens do IRIS mostram uma multitude de finas estruturas parecidas com fibras que nunca tinham sido observadas anteriormente, revelando que enormes contrastes de densidade e temperatura ocorrem através dessa região mesmo entre loops vizinhos que estão localizados a somente poucas centenas de milhas de distância. As imagens também mostram pontos que rapidamente brilham e apagam, o que fornece pistas sobre como a energia é transportada e absorvida através dessa região. As imagens do IRIS da fina estrutura nessa região de interface ajudarão os cientistas a rastrearem como a energia magnética contribui para aquecer a atmosfera do Sol.
 
Os cientistas precisam observar a região com um detalhe extremo pois a energia fluindo através dela energiza a camada superior da atmosfera do Sol, a coroa, que atinge temperaturas maiores que 1 milhão de Kelvins, quase mil vezes mais quente do que a própria superfície do Sol. O IRIS é uma missão do NASA Small Explorer, que foi lançada da Base da Força Aérea de Vandenberg, na Califórnia, em 27 de Junho de 2013.
 
As capacidades do IRIS são unicamente desenvolvidas para revelar essa região de interface. Entendendo a região de interface é importante pois ela forma a emissão ultravioleta que impacta o espaço próximo da Terra e o clima da Terra. A energia viajando por essa região também ajuda a dirigir o vento solar, que durante os eventos climáticos extremos espaciais perto da Terra, podem afetar satélite, a malha de energia, e o sistema de posicionamento global, ou GPS. Desenhado para pesquisar a região de interface no maior detalhe do que já se foi feito antes, o instrumento do IRIS é uma combinação de um telescópio ultravioleta e do que se chama um espectrógrafo. A luz do telescópio é dividida em dois componentes. O primeiro fornece imagens de alta resolução, capturando dados de somente um por cento do Sol por vez.
 
Enquanto essas são imagens relativamente pequenas, as imagens podem resolver feições bem finas, com aproximadamente 150 milhas de diâmetro. Enquanto as imagens são de um comprimento de onda da luz por vez, o segundo componente é um espectrógrafo que fornece informações sobre muitos comprimentos de onda da luz de uma só vez.
 
O instrumento divide a luz do Sol em seus vários comprimentos de onda e mede quanto de cada um desses comprimentos de onda estão presentes. Essa informação é então plotada num gráfico eu mostra as linhas espectrais. As linhas mais altas correspondem aos comprimentos de onda em que o Sol emite relativamente mais energia. A análise das linhas espectrais também pode fornecer dados sobre a velocidade, a temperatura e a densidade, informações cruciais quando se tenta rastrear como a energia e o calor se move por essa região.
 
“A qualidade das imagens e do espectro que nós estamos recebendo do IRIS são impressionantes. Isso era exatamente o que esperávamos”, disse Alan Title, principal pesquisador do IRIS no Lockheed Martin Advanced Technology Center Solar e Astrophysics Laboratory em Palo Alto, na Califórnia. “Existe muito trabalho a frente para entender o que nós estamos vendo, mas a qualidade dos dados nos permitirão fazer isso”. O IRIS não somente fornece o estado da arte das observações para olhar na região da interface, ele faz uso da mais avançada tecnologia computacional para ajudar a interpretar o que se vê. Na verdade, interpretar a luz fluindo dessa região de interface não poderia ser feita antes do advento dos supercomputadores de hoje, pois, nessa área do Sol, a transferência e a conversão de energia de uma forma para a outra não é entendida.
 
A missão IRIS tem implicações de longo prazo para entender a gênese do clima espacial perto da Terra. Entendendo como a energia e o material solar se move através da região de interface poderia ajudar os cientistas a melhorarem suas previsões desses tipos de eventos que podem corromper as tecnologias na Terra.
 
O Observatório IRIS foi desenhado e a missão é gerenciada pela Lockheed Martin. O Harvard-Smithsonian Center for Astrophysics em Cambridge Mass., construiu o telescópio. A Universidade Estadua de Montana em Bozeman, Mont. desenhou o espectrógrafo. O Ames Research Center da NASA em Moffett Field, Califórnia, fornece as operações da missão e os sistemas de dados terrestres. O Goddard gerencia o Small Explorer Program para o Science Mission Directorate da NASA em Washington, d.C. O Norwegian Space Center está fornecendo os links de download regulares dos dados científicos. Entre outros contribuintes estão a Universidade de Oslo, na Noruewga, a Universidade de Stanford em Stanford, na Califórnia.

WISE da NASA descobre que os misteriosos objetos Centauros deve ser cometas

A figura mitológica do Centauro - metade homem, metade cavalo - é usada para representar a população dos misteriosos objetos entre as órbitas de Júpiter e Netuno.Nasa/JPL
 
 A verdadeira identidade de centauros, os pequenos corpos celestes que orbitam o Sol entre Júpiter e Netuno, é um dos grande mistérios persistentes da astrofísica. Eles são asteroides ou cometas? Um novo estudo de observações feitas com o Wide-field Infrared Survey Explorer, ou WISE da NASA aponta que a maior parte dos objetos centauros são cometas. Até agora, os astrônomos não tinham certeza se os centauros são asteroides expulsos da parte interna do Sistema Solar, ou cometas viajando em direção ao Sol de muito longe. Devido a sua natureza dúbia, eles receberam o nome da criatura da mitologia grega que tem cabeça e dorso humano e pernas de cavalo.
 
“Como as criaturas místicas, os objetos centauros parecem ter uma vida dupla”, disse James Bauer do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia. Bauer é o principal autor do artigo publicado online no dia 22 de Julho de 2013 no Teh Astrophysical jornal. “Nossos dados apontam para uma origem cometária para a maior parte dos objetos, sugerindo que eles veem dos locais mais profundos do Sistema Solar”.
 
“Origem Cometária”, significa que um objeto provavelmente é feito do mesmo material de um cometa, que pode ter sido um cometa ativo no passado e que pode voltar a ser ativo no futuro. As descobertas vieram da maior pesquisa em infravermelho já realizada até a data dos centauros e de seus primos mais distantes, chamados de objetos dispersos do disco. A NEOWISE, a porção da missão WISE que caça asteroides, adquiriu imagens infravermelhas de 52 centaurus e objetos dispersos de disco. Quinze dos 52 são novas descobertas. Os Centaurus e os objetos dispersos de disco orbitam em um cinturão instável. A gravidade dos planetas gigantes levarão esses objetos para mais perto do Sol ou para mais distante de suas posições atuais.
 
Embora os astrônomos já tivessem observado anteriormente alguns dos objetos centauros com halos empoeirados, uma feição comum de cometas, e o Telescópio Espacial Spitzer da NASA também tivesse encontrado evidências para cometas no grupo, eles não eram capazes de estimar o número de cometas e asteroides. Dados infravermelhos da missão NEOWISE fornecem informações sobre o albedo dos objetos, ou seja, sua refletividade, para ajudar os astrônomos a vasculharem a população.
 
A missão NEOWISE pode dizer se um objeto centauro tem uma superfície escura ou uma superfície brilhante e que reflete mais luz. As peças do quebra-cabeça começam a fazer sentido quando os astrônomos combinam as informações de albedo com o que já se sabia sobre as cores dos objetos. Observações na luz visível têm mostrado que os objetos centauros normalmente têm tonalidades azul acinzentadas ou mais avermelhadas. Um objeto azul acinzentado poderia ser um asteroide ou um cometa. A missão NEOWISE mostrou que a maior parte dos objetos azul acinzentados são escuros, uma assinatura dos cometas. Um objeto mais avermelhado é mais provável que seja um asteroide.
 
“Os cometas têm uma superfície congelada coberta por material escuro, fazendo com que eles sejam mais escuros do que a maior parte dos asteroides”, disse o co-autor do estudo, Tommy Grav do Planetary Science Institute em Tucson, no Arizona. “As superfícies dos cometas tendem a ser mais escuras, enquanto que as dos asteroides são mais brilhantes como a da Lua”.
 
Os resultados indicam que aproximadamente dois terços da população dos objetos centauros são cometas, que vieram das regiões frígidas do nosso Sistema Solar. Não é claro se o restante dos objetos são asteroides. Os corpos centauros não perderam sua mística inteiramente, mas futuras pesquisas da missão NEOWISE podem revelar seus segredos mais escondidos.
 
O JPL, gerenciado pelo Instituto de Tecnologia da Califórnia, em Pasadena, gerenciou e operou a missão WISE para o Science Mission Directorate da NASA. A porção NEOWISE do projeto foi financiada pelo Near Earth Object Observation Program da NASA. A missão WISE completou seus objetivos principais da missão, vasculhando o céu completamente por duas vezes, em 2011 e hibernou no espaço, desde então.
Fonte: http://www.jpl.nasa.gov

25 de jul de 2013

Curiosity faz sua maior caminhada em um dia no solo marciano

O rover Curiosity da NASA em Marte fez um percurso duas vezes maior no dia 21 de Julho de 2013, do que em qualquer outro dia da missão, rodando por 100.3 metros na superfície do Planeta Vermelho. O comprimento desse drive teve como vantagem, começando no dia de trabalho 340 em Marte, ou Sol 340, uma localização com uma boa visão incomum dos engenheiros do rover que puderam planejar um drive seguro. Nas próximas semanas, a equipe do rover planeja usar a capacidade “autonav” para o rover navegar de forma autônoma, o que pode fazer com que drives mais longos como esse tornam-se mais frequentes.
 
O Curiosity está a aproximadamente três semanas na sua jornada de vários meses da área conhecida como Glenelg onde ele trabalhou pela primeira metade do ano de 2013 até o ponto de entrada para o principal destino da missão: as camadas inferiores do Monte Sharp. O dia em que o rover tinha feito o seu maior drive antes de 21 de Julho de 2013, tinha sido em 26 de Setembro de 2012, quando o rover percorreu 49 metros. Após completar o seu drive mais longo, o Curiosity percorreu 62.4 metros no dia 23 de Julho de 2013 (Sol 342), fazendo com que o percurso total do rover em Marte tenha atingido 1.23 quilômetros.
 
O drive do Sol 340 incluiu três segmentos, com voltas na parte final do primeiro e do segundo segmentos. Os planejadores do rover usaram informações de imagens estereográficas da Navigation Camera (Navcam) localizada no mastro do Curiosity, além de imagens feitas com uma lente telefoto localizada na Mast Camera (Mastcam). O drive também usou a capacidade do rover para utilizar as imagens feitas durante o drive para calcular a distância percorrida, uma maneira de verificar que as rodas do rover não tinham escorregado muito enquanto o rover caminhava. O que nos permitiu fazer um drive tão longo no Sol 340 foi ter começado de um ponto alto e também por ter imagens da Mastcam nos fornecendo o tamanho das rochas de modo que pudéssemos ter certeza que essas rochas não eram obstáculos”, disse o planejador do rover Paolo Bellutta do Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia.
 
“Nós pudemos ver a uma certa distância, mas existia uma área a frente que não tínhamos uma visão tão clara, então nós tivemos que encontrar um caminho ao redor dessa área”. O rover estava de frente para sudoeste quando o dia começou. Ele se virou um pouco mais para oeste antes do drive e usou odometria visual para garantir que esse drive alcançaria a distância pretendida, 50 metros, antes virar mais para a direção sul. A segunda perna, a próxima virada, e a terceira perna completou o drive sem odometria visual, apesar do rover estar usando outra nova capacidade: transformar para a odometria autônoma se a inclinação ou outros fatores excederem limites predeterminados.
 
O novo software do Curiosity deu a ele a capacidade para usar a odometria visual através de uma grande variação de temperaturas. Isso foi necessário pois pôde-se testar nessa primavera, indicando que o par de Navcam está ligado ao computador B do rover é mais sensível à variação de temperatura do que se antecipava. Sem o software de compensação, a análise a bordo de imagens estereográficas poderia indicar diferentes distâncias para o mesmo ponto, dependendo da temperatura onde as imagens foram feitas. O rover teve que ser transformado do computador A para o redundante B em 28 de Fevereiro de 2013 devido a um problema na sua memória flash – problema esse subsequentemente resolvido – no computador A. O par de câmeras Navcam ligado ao computador A mostrou menos variabilidade com a temperatura do que o par que está agora em uso.
 
“Atualmente estamos usando a odometria visual principalmente para uma checagem”, disse Jennifer Trosper do JPL, gerente de projeto do Curiosity. “Nós estamos validando a capacidade para começar o autonav em diferentes temperaturas”. A capacidade de navegação autônoma permitirá que os planjadores do rover comandem drives que irão além da rota que eles podem confirmar de imagens prévias. Eles podem dizer ao rover usar a capacidade autônoma para escolher o caminho seguro por si mesmo além dessa distância. O Curiosity pousou no local conhecido como Bradbury Landing dentro da Cratera Gale em 6 de Agosto de 2012.
 
Desde então rover tem caminhado para leste até a área conhecida como Glenelg, onde ele realizou o maior objetivo científico da missão de encontrar evidências de um antigo ambiente úmido em Marte com as condições favoráveis para o desenvolvimento da vida microbiana. A rota do rover está agora voltada para o sudoeste. No Monte Sharp, no meio da Cratera Gale, os cientistas antecipam encontrar evidências sobre como o antigo ambiente marciano mudou e se desenvolveu. O JPL, uma divisão do Instituto de Tecnologia da Califórnia, em Pasadena, gerencia o Mars Science Laboratory Project para o Science Mission Directorate da NASA em Washington. O JPL desenhou e construiu o rover Curiosity do projeto.

24 de jul de 2013

Da formação estelar explosiva a corrente de material ejectado

ALMA fornece novas pistas sobre o mistério das galáxias de massa extremamente elevada desaparecidas
Imagem a três dimensões das correntes de gás ejectadas pela NGC 253© ESO
 
Novas observações obtidas com o telescópio ALMA no Chile, forneceram aos astrónomos a melhor pista de sempre sobre como é que a formação estelar vigorosa pode ejectar gás de uma galáxia, fazendo com que futuras gerações de estrelas não tenham combustível suficiente para se formar e crescer. As imagens mostram enormes correntes de gás molecular a serem ejectadas por regiões de formação estelar na galáxia vizinha do Escultor. Estes novos resultados ajudam a explicar a estranha escassez de galáxias de massa extremamente elevada no Universo. Este estudo é publicado na revista Nature a 25 de julho de 2013. As galáxias - sistemas como a nossa Via Láctea que contém até centenas de milhares de milhões de estrelas - são os blocos constituintes do cosmos.
 
Um objectivo ambicioso da astronomia moderna é compreender o modo como as galáxias crescem e evoluem, sendo que a formação estelar é uma questão fundamental neste processo: o que é que determina o número de novas estrelas que se irão formar numa galáxia? A Galáxia do Escultor, também conhecida como NGC 253, é uma galáxia em espiral situada na constelação austral do Escultor. A uma distância de cerca de 11,5 milhões de anos-luz de distância do Sistema Solar, é uma das nossas vizinhas galácticas mais próxima, e a galáxia com formação estelar explosiva mais próxima de nós visível no hemisfério sul. Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrónomos descobriram colunas imensas de gás frio e denso a serem ejectadas a partir do centro do disco galáctico.

“Com a magnifica resolução e sensibilidade do ALMA, podemos ver claramente pela primeira vez concentrações maciças de gás frio a serem ejectadas por conchas em expansão com pressão extremamente elevada, criadas por estrelas jovens,“ diz Alberto Bolatto da Universidade de Maryland, EUA, autor principal do artigo científico que descreve estes resultados. “A quantidade de gás que medimos dá-nos uma evidência clara de que algumas galáxias em crescimento cospem mais gás do que o que ingerem. Podemos estar a ver um exemplo actual de uma ocorrência bastante comum no Universo primordial.”

Esta imagem de comparação da galáxia em espiral brilhante próxima NGC 253, também conhecida como Galáxia do Escultor, mostra uma imagem infravermelha obtida pelo telescópio VISTA do ESO (à esquerda) e uma nova imagem detalhada das correntes de gás frio no comprimento de onda do milímetro, obtida pelo ALMA (à direita).
 
Estes resultados podem ajudar a explicar porque é que os astrónomos encontraram muito poucas galáxias de massa elevada no cosmos. Modelos de computador mostram que as galáxias mais velhas, vermelhas, deveriam ter consideravelmente mais massa e um maior número de estrelas do que o que se observa actualmente. Parece que os ventos galácticos ou as correntes de gás ejectado são tão fortes que privam a galáxia do combustível necessário à formação da nova geração de estrelas. Estes jactos traçam um arco que está quase perfeitamente alinhado com os extremos da corrente de gás ionizado observada anteriormente,” nota Fabian Walter, investigador principal no Instituto Max Planck de Astronomia, Heidelberg, Alemanha, e co-autor do artigo.
 
“Estamos a ver uma evolução passo a passo que nos leva desde da formação estelar explosiva às correntes de matéria ejectada. Os investigadores determinaram que enormes quantidades de gás molecular - quase dez vezes a massa do nosso Sol e possivelmente muito mais - estão a ser ejectadas pela galáxia, por ano, a velocidades entre 150 mil a quase um milhão de quilómetros por hora. A quantidade total de gás ejectada seria maior do que a quantidade de gás que teria sido usada para efectivamente formar as estrelas da galáxia, nessa altura. A esta taxa, a galáxia poderia ficar sem gás em tão pouco tempo como uns 60 milhões de anos.

“Para mim este é um exemplo claro de como os novos instrumentos moldam o futuro da astronomia. Estamos a estudar esta região de formação estelar explosiva na NGC 253, e outras galáxias próximas do mesmo tipo, há quase dez anos. Mas antes do ALMA não tínhamos hipótese de ver tais detalhes, “ diz Walter. O estudo utilizou uma configuração inicial do ALMA com apenas 16 antenas. “É bastante excitante pensar no que o ALMA completo com as 66 antenas nos mostrará para este tipo de jactos!” acrescenta Walter.

Mais estudos que utilizarão a rede completa do ALMA ajudarão a determinar o destino final do gás que está a ser levado pelo vento, o que revelará se estes ventos originados pela formação estelar explosiva estão a reciclar o material que serve para formar estrelas ou se o estão efectivamente a remover da galáxia.
Fonte: ESO

Artigos relatam pistas do passado atmosférico de Marte

A imagem mostra uma demonstração em laboratório da câmara de medição dentro do espectrómetro de laser ajustável, um instrumento que faz parte do SAM a bordo do rover Curiosity.Crédito: NASA/JPL-Caltech
 
Um par de novos artigos científicos relatam medições da composição da atmosfera marciana feitas pelo rover Curiosity da NASA, que também fornecem evidências acerca da perda de grande parte da atmosfera original da Marte. O conjunto de instrumentos laboratoriais SAM (Sample Analysis at Mars) a bordo do Curiosity mediu as abundâncias de diferentes gases e diferentes isótopos em várias amostras da atmosfera marciana. Isótopos são variantes do mesmo elemento químico com diferentes pesos atómicos devido a terem diferentes números de electrões, como por exemplo o isótopo mais comum de carbono, carbono-12, e um isótopo estável mais pesado, o carbono-13.
 
O SAM verificou as proporções de isótopos mais leves de carbono e oxigénio no dióxido de carbono que compõe a maioria da atmosfera marciana. Os isótopos pesados de carbono e oxigénio são ambos enriquecidos na fina atmosfera marciana de hoje em dia, em comparação com as proporções das matérias-primas que formaram Marte, conforme deduzido a partir de proporções no Sol e noutras partes do Sistema Solar. Isto fornece não só evidências de suporte para a perda de grande parte da atmosfera original do planeta, mas também pistas de como esta perda ocorreu.
 
"À medida que se perdia atmosfera, a assinatura do processo era incorporada nos rácios isotópicos," afirma Paul Mahaffy do Centro Aeroespacial Goddard da NASA em Greenbelt, no estado americano do Maryland. Ele é o investigador principal do SAM e o autor principal de um dos dois artigos acerca dos resultados do Curiosity, publicados na edição de 19 de Julho da revista Science. Outros factores também sugerem que Marte já teve uma atmosfera muito mais espessa, tais como evidências da presença persistente de água líquida na superfície do planeta há muito tempo atrás, embora a atmosfera seja actualmente demasiado escassa para a água líquida persistir na superfície.
 
O enriquecimento de isótopos mais pesados medidos em pontos dominantes do dióxido de carbono gasoso aponta para um processo de perda a partir do topo da atmosfera -- favorecendo a perda de isótopos mais leves -- em vez de um processo de interacção entre a atmosfera inferior e o solo. O Curiosity mediu o mesmo padrão em isótopos de hidrogénio, bem como de carbono e oxigénio, consistentes com a perda de uma parte considerável da atmosfera original da Marte. O enriquecimento de isótopos mais pesados na atmosfera marciana tinha sido previamente medido em Marte e em bolhas de gás presas dentro de meteoritos marcianos.
 
As medições dos meteoritos indicam que grande parte da perda atmosférica pode ter ocorrido durante os primeiros mil milhões dos 4,6 mil milhões de anos da história do planeta. As medições do Curiosity anunciadas a semana passada podem ser comparadas com os estudos de meteoritos e com modelos de perda atmosférica. As medições do Curiosity não medem directamente a taxa actual de fuga atmosférica, mas a próxima missão da NASA a Marte, a MAVEN (Mars Atmosphere and Volatile Evolution Mission), irá fazê-lo. "O ritmo actual de perda é exactamente o que a missão MAVEN, com lançamento previsto para Novembro deste ano, está projectada para determinar," afirma Mahaffy.
 
Os novos artigos descrevem análises de amostras da atmosfera marciana com dois diferentes instrumentos do SAM durante as primeiras 16 semanas da missão do rover em Marte, que está agora na sua 50.ª semana. O espectrómetro de massa do SAM e o espectrómetro de laser ajustável mediram independentemente rácios virtualmente idênticos de carbono-13 para carbono-12. O SAM também inclui um cromatógrafo a gás que usa todos os três instrumentos para analisar rochas e solo, bem como a atmosfera. "A obtenção do mesmo resultado com duas técnicas muito diferentes aumentou a nossa confiança de que não há nenhum erro sistemático desconhecido subjacente às medições," afirma Chris Webster do JPL da NASA em Pasadena, Califórnia.
 
Ele é o líder científico do espectrómetro de laser ajustável e o autor principal do segundo artigo. "A precisão destas novas medições melhora a base para a compreensão da história da atmosfera. O Curiosity aterrou dentro da Cratera Gale a 6 de Agosto de 2012. O rover começou este mês uma viagem de muitos meses a partir de uma área onde descobriu evidências para um ambiente passado favorável à vida microbiana, em direcção ao Monte Sharp, onde os cientistas vão procurar evidências de como o ambiente mudou.
Fonte: Astronomia On-Line
Related Posts Plugin for WordPress, Blogger...