7 de fev de 2013

Mega Polêmica sobre a Teoria do Big Bang

         
De acordo com o modelo do Big Bang, o Universo se expandiu a partir de um estado extremamente denso e quente e continua a se expandir atualmente. Uma analogia comum explica que o espaço está se expandindo, levando galáxias com ele, como passas em um naco de pão a aumentar. O esquema gráfico superior é um conceito artístico que ilustra a expansão de uma parte de um Universo plano.

Argumentos pró
Sabe-se que uma fonte de luz que se afasta fica avermelhada e outra que se aproxima fica azulada. Como a luz de galáxias distantes vista em telescópios fica mais avermelhada com o passar do tempo tais galáxias estão se afastando. O satélite COBE (explorador de fundo cósmico) detectou em 1992 uma radiação que vem do fundo de todo o cosmo de forma uniforme. Regiões hoje distantes podem há bilhões de anos ter estado muito próximas. A radiação seria eco da explosão que as afastou. Segundo os cientistas, apenas as estrelas visíveis no céu, que funcionam como usinas geradoras de elementos químicos são insuficientes para dar conta de toda a variedade e quantidade de elementos observados. Uma explosão explicaria o fato.
 
Argumentos Contra
Perguntas que o Big Bang ainda não responde : O universo se expande com uma certa velocidade chamada constante de hubble. Para ter o tamanho que tem, deveria ter começado a expansão num dado instante, daí pode se deduzir a idade do universo, mas a idade de algumas estrelas pode ser calculada de outro modo : Pelo tempo que levam para produzir todos os materiais que têm. Segundo as últimas medidas, o universo é mais jovem que muitas estrelas, uma contradição que pode derrubar a teoria. A expansão do universo teria começado com o Big Bang, será que acabará? Depende da quantidade de matéria no cosmo, se houver muita, a gravidade pode gerar atração suficiente para conter a expansão. Nesse caso começaria a se contrair até virar um único ponto. Poderia haver então um novo Big Bang. Os cientistas tentam avaliar quanto de matéria há no cosmo. Como esta gera atração gravitacional, que movimenta galáxias e estrelas é possível ter uma idéia dessa quantidade.

Para o espanto dos cosmólogos, há mais gravidade em ação do que a que pode ser produzida por todas as galáxias e estrelas visíveis . O que gera esta força ninguém sabe , alguns falam de matéria escura. Embora o fundo do universo pareça uniforme, medições muito recentes parecem sugerir que , numa determinada direção, ele se comporta de modo diferente. A velocidade do movimento da Terra em relação ao fundo do cosmo é muito maior do que a esperada. O que estaria arrastando a Terra, o Sol e vária outras estrelas e galáxias? No início dos anos 20 achava-se que o universo era pequeno, estático e que na Via Láctea era todo o universo e que as massas chamadas nebulosas vistas de telescópios eram corpos gasosos. Hubble acabou com essa idéia quando detectou estrelas no braço espiralado da nebulosa Andrômeda. Era uma galáxia. Concluiu-se que as nebulosas eram universos ilhados e distantes. Hubble havia expandido as dimensões do universo em pelo menos 100 vezes.
Fonte: Mega Arquivo

Qual é o propósito do universo?

Se você ficar acordado à noite pensando no sentido do universo, provavelmente acabará em um manicômio. Por que o espaço, as estrelas, os planetas, nós existimos? Qual o objetivo de tudo isso? Eis uma pergunta que tem as mais variadas respostas – geralmente filosóficas. Sob a ótica científica, no entanto, há uma teoria interessante que dá uma espécie de “razão de ser” para o nosso universo e todos os objetos que flutuam nele. Se ela for verdade, significa que ele não passa de um gerador de buraco negro, ou um meio de produzir quantos universos bebês for possível. A teoria, chamada de Seleção Natural Cosmológica (Cosmological Natural Selection), foi conjurada por Lee Smolin, pesquisador do Instituto Perimeter de Física Teórica e professor adjunto de física da Universidade de Waterloo, ambos no Canadá.

A ideia proposta por Smolin gira em torno do fato de que os processos darwinianos se aplicam mesmo à extrema macroescala do universo e a entidades não biológicas. Como o universo é uma potencial unidade de replicação, o cientista sugere que é sujeito a pressões seletivas. Por conseguinte, quase tudo o que o universo faz é voltado para a replicação. É um cenário que explica como as leis da natureza são escolhidas”, disse Smolin. “Se a minha teoria for verdade, esses parâmetros no nosso universo são voltados para maximizar o número de buracos negros feitos. Os buracos negros e suas singularidades cosmológicas são centrais para a teoria de Smolin. Estas são regiões do espaço-tempo nas quais as quantidades utilizadas para medir os campos gravitacionais ou de temperatura tornam-se infinitas, e a relatividade geral deixa de ser útil.

A relatividade geral clássica diz que uma singularidade existe dentro de cada buraco negro. Mas tanto a teoria das cordas quanto a gravidade quântica sugerem que as singularidades de buracos negros podem ser eliminadas – e quando isso acontece, pode ser possível descrever a evolução futura da região do espaço-tempo dentro dele. Tudo o que cai em um buraco negro não atinge a singularidade cosmológica e para de evoluir, de modo que o tempo simplesmente chega ao fim – o tempo continua e tudo o que caiu no buraco negro teria um futuro, e essa região é o que chamamos de um universo bebê”, explica Smolin. Estes universos bebês são imunes a tudo o que acontece nos “universos pais”, incluindo inflação eterna e sua morte térmica.

E, como a teoria de Darwin sobre a variação e seleção, Smolin também supõe que universos bebês são um pouco diferentes dos pais. Por sua vez, essa “mutação” cosmológica – em que os parâmetros da natureza foram ligeiramente modificados – pode resultar em um novo universo que é melhor ou pior em termos de capacidade de replicação. Por exemplo, se a constante cosmológica e velocidade da luz forem um pouco diferentes, ou se a lei da gravidade se tornar muito fraca ou forte, o novo universo poderia ser subótimo em sua capacidade de fazer grandes quantidades de estrelas de grande massa. Em tal universo, a matéria pode não ser capaz de fundir-se em estrelas, ou pode ser incapaz de formar galáxias.

Neste modelo, um universo “adequado”, portanto, seria um que evoluísse de tal forma que a sua capacidade de produzir buracos negros fosse otimizada. E isso pode explicar porque observamos um universo que produz estrelas gigantes – cada uma é uma tentativa de fazer um universo bebê. A ideia da variação cosmológica, no entanto, é pura conjectura. “É uma hipótese”, admite Smolin. Mas a teoria das cordas pode ser um mecanismo potencial para explicá-la. “Ela descreve uma paisagem de diferentes parâmetros cosmológicos, transições de fase diferentes, e isso é quase exatamente o tipo de exemplo que eu tinha em mente quando tentei explicar a variação das constantes”, disse. Smolin também não sabe quantos universos bebês cada buraco negro é capaz de produzir, mas suspeita que seja um por buraco negro. “A resposta vai depender da teoria quântica da gravidade”, explica.

Vida humana: acidente? - Se o propósito do universo é criar o máximo de universos bebês possível, a vida humana é apenas um acidente? Os seres humanos e todos os outros organismos são um mero epifenômeno, um espetáculo à parte de um processo muito maior?  Se a hipótese da seleção natural cosmológica for verdadeira, então a vida – e o universo sendo amigável à vida – é uma consequência do universo ser bem adequado para a produção de buracos negros, produzindo muitas, muitas estrelas massivas”, disse Smolin, com ênfase no “se”. Outros cientistas argumentam, inversamente, que o universo é assustadoramente biofílico, ou seja, que as leis da natureza parecem ser orientadas para a vida. Alguns até sugerem que essa é a finalidade do universo – gerar organismos biológicos (a hipótese do biocosmo).

Da mesma forma, os filósofos trazem à tona o Princípio Antrópico – a noção de que qualquer análise do universo e do que acontece dentro dele PRECISA levar em conta a presença de observadores (ou seja, vida inteligente). Sob essa ótica, estamos sujeitos a um efeito de seleção observacional, argumentam eles, o que significa que só podemos observar um universo que é amigável à vida. Smolin, por outro lado, deixa essas linhas de argumentação de lado, dizendo que os cosmólogos devem estudar e compreender as propriedades do universo de uma forma que não o conecte a vida.

Segundo ele, o Princípio Antrópico é incapaz de fazer uma previsão falsificável para qualquer tipo de experimento testável (uma teoria só é científica se existe a possibilidade de serem concebidos testes que provem que é falsa, ou seja, se é falsificável), enquanto a seleção natural cosmológica é capaz exatamente disso. Além do mais, as leis do universo podem ser explicadas sem referência alguma a vida. Não é uma coincidência que vivemos em um mundo que tem muito carbono e oxigênio, segundo Smolin: a presença destes elementos aparentemente adequados à vida tem uma explicação perfeitamente boa fora do paradigma biofílico. Esses, por exemplo, criam as condições necessárias para a formação eficiente de estrelas suficientemente grandes que formam buracos negros.

Críticas - A teoria de Smolin parece extraordinária, mas não passou longe das críticas de outros cientistas. O cosmólogo Joe Silk, por exemplo, diz que o universo que observamos está longe de ser um produtor ideal de buracos negros. Ele especula que outras “versões” de universo poderiam fazer um trabalho muito melhor nisso. Da mesma forma, Alexander Vilenkin argumenta que a taxa de formação de buracos negros pode ser melhorada através do aumento do valor da constante cosmológica. Segundo ele, Smolin está errado em teorizar que os valores atuais de todas as constantes da natureza são perfeitamente ajustados para maximizar a produção de buracos negros. Já Ruediger Vaas reclama que o primeiro erro de Smolin foi fazer analogias com processos darwinianos. A aptidão dos universos de Smolin não é limitada pelo ambiente, mas pelo número de buracos negros. Além disso, embora os universos de Smolin tenham taxas de replicação diferentes, elas não competem entre si, o que ele considera um componente crucial de qualquer processo darwiniano.

Segundo o professor de física teórica da Universidade de Stanford (EUA) Leonard Susskind, Smolin acredita que as constantes da natureza são determinadas pela sobrevivência do mais forte – o mais apto a se reproduzir -, que as propriedades que levam a maior taxa de reprodução dominarão a população de universos, e que a probabilidade esmagadora é que vivemos em tal universo – mas essa lógica pode levar a conclusões ridículas. No caso da inflação eterna, levaria à previsão de que nosso universo tem a constante cosmológica máxima possível, já que a taxa de reprodução não é nada a não ser a taxa de inflação. Smolin conhece essas objeções e disse que muitas dessas preocupações foram abordadas em seu livro, “A Vida do Cosmos” (publicado no Brasil pela editora UNISINOS), e que seu próximo livro, “Time Reborn: From the Crisis in Physics to the Future of the Universe” (em tradução livre, algo como “Tempo de renascer: da crise na física ao futuro do universo”), vai também enfrentar muitas dessas questões.

“Minha impressão é que minha ideia ainda não foi refutada, embora várias pessoas tenham tentado”, disse. “Isso não significa que é verdadeira, mas que resistiu a tentativas de falsificá-la”. De acordo com Smolin, a parte mais importante da sua reivindicação é que é um argumento científico. “A ideia em si não é a coisa mais importante. Ela instancia uma reivindicação geral de que, se você quiser explicar o universo, uma das coisas que você vai ter que explicar é por vemos certas leis da natureza, e não outras. A alegação que estou fazendo é que esta questão pode ser de fato respondida cientificamente – uma alegação que vai nos levar em direção a uma maneira de fazer previsões para ver se as leis da natureza não são fixas, mas evoluem. Esse é o ponto chave para mim”, conclui.
Fonte: Hypescience.com
[io9, DuvidaMetodica]

Gelo de hidrocarbonetos boia em lua de Saturno

Concepção artística da lua Titã
A sonda Cassini, da Nasa, identificou que Titã, a maior das luas de Saturno, tem vários pedaços de gelo de hidrocarbonetos boiando em sua superfície. De acordo com os cientistas, a presença desses flocos de etano e de metano nos oceanos do satélite o torna ainda mais interessante para o estudo de possíveis formas de vida extraterrestres. Assim como a Terra, Titã tem oceanos e ciclos de chuva. Mas, em vez de água, são hidrocarbonetos, com etano e metano em estado líquido. A descoberta surpreende porque os cientistas achavam que não haveria nada boiando nesses mares, uma vez que o metano sólido é mais denso que sua forma líquida. Ou seja: ele deveria afundar.
Fonte: Folha

Cientistas registram pela 1ª vez erupção antes de uma supernova

© Hubble (supernova Cassiopeia A)

Cientistas registraram uma erupção de uma estrela pouco mais de um mês antes de ela explodir como uma supernova. Já se acreditava que esse tipo de evento ocorria antes de uma grande explosão estelar, mas o registro do fenômeno pode ajudar os astrônomos a preverem quando esses cataclismos ocorrerão. Os pesquisadores utilizaram arquivos do grupo Palomar Transient Factory (PTF), que busca por supernovas tipo II no céu, liderados por Eran Ofek, do Instituto Weizmann, em Israel. Se essas estrelas de grande massa, quando explodem seu núcleo rico em ferro, emitirem hidrogênio, elas serão consideradas uma supernova do tipo II. Se a linha de emissão for estreita, ela é chamada do tipo IIn (narrow).

Os cientistas acreditam que essa linha ocorre porque o hidrogênio emitido tem que passar por uma fina camada de matéria emitida anteriormente pela estrela. Contudo, até agora não havia evidências que apoiassem essa teoria. Para isso, a equipe utilizou durante quase quatro anos um telescópio robótico montado no observatório Palomar, na Califórnia, para fazer a varredura no céu noturno. A cada observação, o equipamento enviava os dados a centenas de quilômetros, para o Laboratório Nacional Berkeley, onde computadores analisavam os dados em busca de eventos que interessassem à pesquisa. Os cientistas poderiam acessar os resultados pela internet.

Em 25 de agosto de 2010, os computadores terminaram sua busca. O telescópio havia registrado, a meio bilhão de anos-luz da Terra, uma supernova do tipo IIn na constelação de Hércules, a supernova SN2010mc. Logo depois, Ofek liderou uma busca por eventos em registros anteriores do PTF na mesma vizinhança estelar e achou um possível precursor para a supernova que havia ocorrido 40 dias antes da explosão. Os astrônomos desenvolveram um modelo em um computador para testar a previsão feita pela teoria e os registros do telescópio. Eles concluíram que a estrela ejetou o equivalente a 100 vezes a massa do Sol em uma concha que se expandiu a 2 mil km/s, 40 dias antes de explodir como supernova.

Quando ocorreu a explosão, o material passou por camadas de destroços anteriores, mostrando uma variedade de brilho que funcionou como um registro do passado da estrela. Ao analisar estes dados, os cientistas criaram um modelo do que teria ocorrido: ondas gravitacionais teriam levado a sucessivos episódios de perda de massa pela estrela e que culminaram no colapso e explosão do núcleo. Devido à pequena diferença de tempo entre a "erupção final" e a explosão de supernova, observa-se que há uma ligação causal. Isso pode ter grande importância em estudos futuros sobre os processos "gatilhos" das supernovas.

A análise desse primeiro caso ajudou a identificar outros do mesmo tipo e muitos outros ainda podem ser descobertos. "Apesar de o projeto PTF não coletar mais dados a cada noite, nós ainda nos apoiamos nos recursos do NERSC (Centro de Computação de Pesquisa Científica em Energia, em Berkeley, onde os dados estão guardados) para peneirar nossos arquivos", diz Peter Nugent, pesquisador de Berkeley.
Fonte: Terra/Nature
Related Posts Plugin for WordPress, Blogger...