28 de fev de 2013

Sonda Messenger revela que Mercúrio teve um vasto oceano de magma

A sonda Messenger orbita Mercúrio desde 17 de março de 2011.
Equipada com nove instrumentos científicos, a missão dela é mapear o planeta, determinar a composição e sondar sua evolução geológica. Nesse mesmo ano, um grupo de cientistas analisaram dados de Raio-X fluorescente enviados da sonda, e identificaram duas composições distintas, e inexplicáveis, de formações rochosas na superfície. Uma equipe do Massachusetts Institute of Technology (MIT) usou os dados para criar em laboratório os dois tipos de rocha. Submetendo cada uma a altas temperaturas e pressões, simulando os processos geológicos do planeta, dizem que há apenas uma explicação: Um vasto oceano de magma criou duas camadas diferentes de cristais, solidificadas, que eventualmente, refundiram-se no magma que entrou em erupção na superfície de Mercúrio. O professor de geologia da MIT, Timothy Grove, diz que "a coisa que é realmente incrível em Mercúrio é, isso não aconteceu ontem".
 
A estimativa da existência do magma não é exata, mas "a crosta é, provavelmente, de mais de quatro bilhões de anos, de modo que este oceano de magma é um recurso realmente antigo".  Inicialmente os cientistas procuravam por cenários em que as duas composições de rochas pudessem estar relacionadas. Por exemplo, as duas rochas poderiam ter vindo de uma mesma região e uma ter se cristalizado mais que a outra. Mas, as duas composições eram muito diferentes para terem se originado de uma mesma região. Para Grove, a explicação mais fácil é que um oceano de lava tenha formado, ao longo do tempo, composições diferentes de cristais, a medida que se solidificava, que depois teriam se refundido com as lavas expelidas de grandes erupções vulcânicas. Estima-se que o oceano de lava existia nos primeiros 10 milhões de anos de existência do planeta, podendo ter sido criado a partir dos violentos processos de formação do, segundo Grove.
 
À medida que a nebulosa solar condensava, pedaços colidiam com outros pedaços maiores e maiores, formando planetas. Esse processo de colisão e acréscimos pode ter criado energia suficiente para derreter completamente o planeta. "Estamos gradualmente preenchendo mais espaços em branco, e a história pode muito bem mudar, mas este trabalho estabelece uma estrutura para pensar sobre os novos dados", diz Larry Nittler da Carnegie Institution of Washington, que não está envolvido no estudo. "É um, muito importante, primeiro passo indo em direção a dados interessantes para a real compreensão."
Fonte: Jornal Ciência

Estrelas “moribundas” são capazes de manter planetas possivelmente habitáveis

Sabemos que a Terra é, por enquanto, o único planeta habitável, porque reúne condições específicas para a existência e manutenção de vida. Sendo o terceiro planeta do Sistema Solar, a Terra está a uma distância de aproximadamente 150.000.000 km do Sol, o que contribuiu para uma série de fatores que foram favoráveis para a formação de vida no planeta. É satisfatória, por exemplo, a quantidade de radiação solar que chega até a atmosfera terrestre, no qual com o auxílio de camada de gases que envolvem a Terra, acaba sendo regulada, mantendo a atmosfera e a presença de água em estado líquido. O Sol é, por assim dizer, o elemento que essencialmente contribui para a existência da vida. No entanto, o planeta deve estar a uma distância consideravelmente segura para que isso possa ocorrer. No caso de Mercúrio e Vênus, por exemplo, eles estão tão próximos do Sol que praticamente não possuem atmosfera, e suas temperaturas são extremas.
 
Mercúrio chega a 400 °C quando um lado está voltado para o Sol, já o lado oposto apresenta - 180 °C! Vênus é o planeta mais quente do sistema solar, superando até Mercúrio, que é o mais próximo. A sua temperatura média à superfície é de aproximadamente 460 °C por conta das fortes ocorrências de efeito estufa, além de não apresentar água. Estar afastado do Sol a uma distância muito grande também não contribui para a existência de vida. Marte e Júpiter, por exemplo, estão logo após a Terra, e não possuem condições favoráveis para serem habitados. Muito já se falou de Marte, e até já foi comprovado que em algum momento existiu água em sua superfície, mas hoje em dia, contudo, este planeta não exibe meios que permitam água no estado líquido. O mesmo pode-se dizer de Júpiter, o gigante gasoso, que se resume a uma imensa bola de hidrogênio e hélio. Sua temperatura é de aproximadamente -150°C, o que também indica a impossibilidade de manutenção da vida.
 
O único planeta que possui condições favoráveis é a Terra, graças ao Sol que segue trabalhando a todo vapor. Entretanto, estudos comprovam que uma estrela que já esteja no final de sua vida também consegue manter planetas com vida, e se caso exista mesmo a vida neles, seria possível detectar esses planetas na próxima década. Este resultado vem de uma pesquisa teórica relacionada a planetas como a Terra que orbitam estrelas anãs brancas. Os pesquisadores descobriram que é possível detectar oxigênio na atmosfera de um planeta ‘anão branco’ com muito mais facilidade que em um planeta como a Terra orbitando uma estrela parecida ao Sol. Avi Loeb, teórico do Centro de Astrofísica de Harvard-Smithsonian (CFA) e diretor do Instituto de Teoria e Computação disse: “Na busca por assinaturas biológicas extraterrestres, as primeiras estrelas que estudamos devem ser anãs brancas”, em entrevista ao ScienceDaily.
 
 
Estrela anã branca
Está é a terminação dada a uma estrela representando seu estágio de ‘morte’. Sendo assim, ela é menor que as estrelas comuns e com um brilho muito inferior, se comparado com as demais. O fato é que ao consumir todo o hidrogênio de seu núcleo elas podem se converter a um tipo de estrela conhecida como gigante vermelha. Essas são compostas por um núcleo pequeno e denso de carbono e camadas externas onde se fundem hélio e hidrogênio. No entanto, as gigantes vermelhas não possuem tamanho suficiente para produzir o calor necessário para continuar desenvolvendo o processo de fusão do material que está em seu núcleo, fazendo com que esse núcleo diminua. Mesmo assim, a densidade e pressão no núcleo aumentam cada vez mais, e quando chega um ponto no qual o núcleo não consegue diminuir, ele acaba se estabilizando a uma densidade de aproximadamente 1.010 kg/m³.

 Apesar disso, a parte externa da estrela continua liberando energia e consumindo hélio, tornando-se instável e transformando-se em uma imensa nuvem de materiais que compunham a estrela original. O que era antes uma gigante vermelha passa a ser duas coisas diferentes: uma grande nuvem fria e difusa, que se conhece pelo nome de nebulosa planetária, e um mínimo corpo celeste que possui um núcleo de carbono, e que está em baixa atividade de fusão de hélio e hidrogênio em sua crosta. Este corpo celeste é denominado uma anã branca. Voltando ao estudo divulgado recentemente, caso existam planetas nas zonas habitáveis de estrelas anãs brancas, seria preciso encontrá-los antes que se pudesse estudá-los. Aparentemente, a abundância de elementos pesados na superfície da anã branca sugere uma fração significativa de planetas rochosos. Segundo Loeb e seu colega Dan Maoz da Universidade de Tel Aviv, estima-se que pesquisando as próximas 500 anãs brancas seja possível detectar um ou mais planetas habitáveis como a Terra.
 
Como encontrar esses possíveis planetas habitáveis
Um planeta que orbita uma anã branca tem aproximadamente o mesmo tamanho da Terra. O melhor método para encontrar esses planetas, segundo pesquisadores, é encontrar uma estrela anã que escurece quando um planeta em órbita cruza a sua frente – esse fenômeno é chamado de trânsito. Só é possível achar esses planetas quando eles estão em trânsito. Pois, quando a luz emitida pela anã branca brilha através do anel de ar que rodeia o planeta, a sua atmosfera absorve um pouco de luz estelar, deixando impressões digitais químicas que podem comprovar se no ar contém vapor de água ou oxigênio. O telescópio espacial da NASA ,James Webb (JWST), será lançado até o final desta década para tentar farejar os gases desses possíveis mundos habitáveis. Os pesquisadores Loeb e Maoz criaram um espectro sintético, simulando o que o JWST iria ver se ele examinasse um planeta habitável em órbita de uma anã branca. Foram constatadas que poucas horas seriam suficientes para detectar oxigênio e vapor de água nesses corpos celestes. "JWST oferece a melhor esperança de encontrar um planeta habitado no futuro próximo", disse Maoz.
Fonte: Jornal Ciência

O nascimento de um planeta gigante?

Candidato a protoplaneta encontrado dentro do seu útero estelar
Impressão artística de um planeta gigante gasoso a formar-se no disco que rodeia a jovem estrela HD100546(ESO)

Astrónomos utilizaram o Very Large Telescope do ESO e obtiveram o que é, muito provavelmente, a primeira observação direta de um planeta em formação, ainda envolvido por um espesso disco de gás e poeira. Se for confirmada, esta descoberta ajudar-nos-á a compreender melhor como se formam os planetas, uma vez que será possível testar as teorias atuais versus um alvo observável. Uma equipa internacional liderada por Sascha Quanz (ETH Zürich, Suíça) estudou o disco de gás e poeira em torno da estrela jovem HD100546, uma estrela relativamente próxima situada a 335 anos-luz de distância da Terra. A equipa surpreendeu-se ao descobrir o que parece ser um planeta em formação, ainda envolvido no disco de material que rodeia a estrela. O candidato a planeta será um gigante gasoso semelhante a Júpiter.
 
Até agora, a formação de planetas tem sido um tópico desenvolvido essencialmente por simulações de computador,” diz Sascha Quanz. “Se se confirmar que a nossa descoberta é efetivamente um planeta em formação, então pela primeira vez os cientistas poderão estudar de forma empírica o processo de formação planetária e a interação entre um planeta em formação e o seu meio circundante, desde a fase primordial.” A estrela HD100546 tem sido muito estudada e foi já sugerida a existência de um planeta gigante situado cerca de sete vezes mais longe da estrela do que a Terra se encontra do Sol. O candidato a planeta agora descoberto situa-se na região exterior do sistema, cerca de dez vezes mais longe. O possível protoplaneta foi detectado como uma ténue mancha situada no disco circunstelar, revelada graças ao instrumento de óptica adaptativa NACO, montado no VLT do ESO, e à técnica inovadora de análise de dados.
 
Esta imagem composta mostra duas imagens obtidas pelo Telescópio Espacial Hubble da NASA/ESA (à esquerda) e pelo sistema NACO montado no Very Large Telescope do ESO (à direita) do gás e poeira que rodeiam a estrela jovem HD100546. A imagem Hubble no visível mostra o disco exterior de gás e poeira que se encontra em torno da estrela. A nova imagem infravermelha do VLT de uma pequena parte do disco mostra um candidato a protoplaneta. Ambas as imagens foram obtidas com um coronógrafo especial que suprime intensa radiação emitida pela estrela brilhante. A posição da estrela está marcada com uma cruz vermelha nas duas imagens.
 
 As observações foram obtidas com o coronógrafo do NACO, que opera nos comprimentos de onda do infravermelho, suprimindo a intensa radiação emitida pela estrela na região onde se encontra o candidato a protoplaneta. De acordo com as atuais teorias, os planetas gigantes crescem ao capturar algum do gás e poeira que restam após a formação da estrela. Os astrónomos descobriram várias características na nova imagem do disco em torno da HD100546, que apoiam esta hipótese de formação de protoplaneta. Estruturas existentes no disco circunstelar poeirento, que poderiam ser causadas por interações entre o planeta e o disco, apareceram próximo do protoplaneta detectado. Existem também indícios de que as regiões em volta do protoplaneta estejam a ser aquecidas pelo processo de formação. Adam Amara, outro membro da equipa, está entusiasmado com a descoberta. “A investigação sobre exoplanetas é uma das novas fronteiras da astronomia mais excitantes e a obtenção de imagens diretas de planetas é algo ainda muito recente, que só agora começa a ser explorado, beneficiando imenso das recentes inovações nos instrumentos e nos métodos de análise de dados.
 
Neste trabalho usámos técnicas de análise de dados desenvolvidas especificamente para a investigação cosmológica, o que mostra que a partilha de ideias entre diferentes campos pode levar a progressos extraordinários.” Embora a explicação mais provável para as observações obtidas seja a existência de um protoplaneta, os resultados deste estudo requerem observações suplementares para se confirmar a existência do planeta e invalidar outros cenários menos prováveis mas também plausíveis. Entre outras explicações possíveis, o sinal detectado pode estar a ser emitido por uma fonte de fundo. É igualmente possível que o objeto detectado não seja um protoplaneta, mas sim um planeta completamente formado, que tenha sido ejetado da sua órbita original, próxima da estrela. Quando se confirmar que o novo objeto em torno da HD100546 é, de facto, um planeta em formação, envolvido ainda pelo disco de gás e poeira progenitor, teremos então um laboratório único para estudar o processo de formação de um novo sistema planetário.
Fonte: ESO

Estrelas são ejetadas do centro galáctico a 3 milhões de km/h

 A uma surpreendente velocidade de 3,2 milhões de quilômetros por hora (km/h), seis estrelas percorrem nossa galáxia, supostamente ejetadas pelo buraco negro que fica no centro dela. “São objetos incrivelmente rápidos que estão, de fato, soltos da gravidade da Via Láctea”, explica o estudante de astronomia Keith Hawkins, da Universidade de Ohio (EUA), um dos autores do estudo. Acredita-se que o fenômeno ocorre quando um par de estrelas se aproxima de um buraco negro super massivo (como o que se encontra no centro da nossa galáxia), que engole uma delas e libera uma imensa quantidade de energia, “arremessando” a outra. Como a região central da galáxia está cheia de poeira espacial, estrelas que escapam dessa área podem ajudar cientistas a estudar melhor as propriedades da região.

Embora já tenham sido encontradas anteriormente outras “estrelas de hipervelocidade” (como são conhecidas), estas são as primeiras de tamanho similar ao do sol, algo difícil de observar – como há incontáveis estrelas grandes como o sol espalhadas pela galáxia, mesmo hipervelozes podem acabar passando despercebidas. Para encontrar essas “corredoras”, os pesquisadores responsáveis usaram dados do telescópio Palomar, na Califórnia (EUA). Primeiro, eles conseguiram descobrir 130 estrelas próximas ao buraco negro central da Via Láctea que estavam viajando a altíssimas velocidades. Em seguida, focaram naquelas que tinham uma velocidade consistente com a “ejeção” provocada pelo buraco negro central. Os resultados ainda estão sob análise, mas já há otimismo em relação a eles.
Fonte: Hypescience.com / LiveScience

NuSTAR da NASA ajuda a resolver o enigma da rotação dos buracos negros

O concepção artistica que ilustra um buraco negro supermassivo com milhões de bilhões de vezes a massa do nosso sol. Buracos negros supermassivos são extremamente densos objetos enterrados no coração de galáxias. Crédito da imagem: NASA / JPL-Caltech
 
Dois observatórios de raios-X, o Nuclear Spectroscopic Telescope Array, ou NuSTAR da NASA e o SMM-Newton da ESA, mediram de forma definitiva, pela primeira vez, a taxa de rotação de um buraco negro com uma massa equivalente a 2 milhões de vezes a massa do Sol. O buraco negro supermassivo localiza-se no coração repleto de gás e poeira da galáxia conhecida como NGC 1365, e está girando a uma velocidade quase tão rápida quanto a permitida pela teoria da gravidade de Einstein. As descobertas aparecem num estudo publicado, hoje, dia 28 de Fevereiro de 2013, na Revista Nature. O estudo mostra como os astrônomos resolveram um debate de longa data na astronomia sobre medidas similares feitas em outros buracos negros e levarão a entender melhor como os buracos negros e as galáxias se desenvolvem. “Isso é muito importante para o campo da ciência dos buracos negros”, disse Lou Kaluzienski, um cientista do programa NuSTAR na sede da NASA em Washington.
 
As observações também funcionam como um poderoso teste para a teoria da relatividade geral de Einstein, que diz que a gravidade pode curvar o espaço-tempo, a fábrica que forma o nosso universo, e a luz que viaja através dela. “Nós podemos traçar a matéria à medida que cai em rotação na direção do buraco negro, usando os raios-X emitidos das regiões muito próximas do objeto”, disse a coautora do novo estudo, Fiona Harrison, pesquisadora principal do NuSTAR e sediada no Instituto de Tecnologia da Califórnia em Pasadena. “A radiação que nós observamos é dobrada e distorcida pelos movimentos das partículas e pela incrivelmente forte gravidade do buraco negro”. O NuSTAR, uma missão da classe Explorer, lançada em Junho de 2012, foi desenhado para detectar a luz raio-X de mais alta energia e em grande detalhe. Ele complementa telescópios que observam a luz raio-X de baixa energia como o XMM-Newton e como o Observatório de Raio-X Chandra, da NASA.


Os cientistas medem as taxas de rotação de buracos negros supermassivos, espalhando a luz de raios-X em cores diferentes. Crédito da imagem: NASA / JPL-Caltech

Os cientistas usam esses e outros telescópios para estimar a taxa com a qual os buracos negros executam o seu movimento de rotação. Até agora, essas medidas não eram certas pois as nuvens de gás podiam obscurecer os buracos negros confundindo os resultados. Com a ajuda do XMM-Newton, o NuSTAR foi capaz de ver um intervalo muito maior de energias de raios-X e penetrar profundamente na região localizada ao redor do buraco negro. Os novos dados demonstram que os raios-X não estão sendo dobrados pelas nuvens, mas sim pela tremenda gravidade do buraco negro. Isso prova que a taxa de rotação dos buracos negros supermassivos pode ser determinada de forma conclusiva. “Se eu pudesse adicionar um instrumento ao XMM-Newton, esse instrumento seria um telescópio como o NuSTAR”, disse Norbert Schartel, Cientista de Projeto do XMM-Newton do Centro da Agência Espacial Européia em Madrid. “Os raios-X de alta energia fornecem uma peça essencial para resolver esse problema”.
 
Medir a rotação de um buraco negro supermassivo é fundamental para entender sua história passada e da sua galáxia hospedeira também. “Esses monstros, com massas de milhões a bilhões de vezes a massa do Sol, são formados como pequenas sementes no início do universo e crescem engolindo estrelas e gás de suas galáxias hospedeiras, fundindo-se com outros buracos negros gigantes quando as galáxias colidem, ou ambos”, disse o autor principal do estudo Guido Risaliti do Harvard-Smithsonian Center for Astrophysics em Cambridge, Mass., e do Italian National Institute for Astrophysics. Buracos negros supermassivos são envoltos por uma panqueca de discos de crescimento, formados à medida que a sua gravidade puxa matéria para o seu interior. A teoria de Einstein prevê que quanto mais rápido um buraco negro gira, mais próximo do buraco negro o disco de crescimento se localiza. Quanto mais perto o disco de crescimento está, mais gravidade do buraco negro irá dobrar o jato de luz de raio-X que é expelido do disco.
 
Os astrônomos procuram por esses efeitos de dobras para analisar a luz raio-X emitida pelo ferro circulando no disco de crescimento. Nesse novo estudo, eles usaram tanto o XMM-Newton, como o NuSTAR de forma simultânea para observar o buraco negro na NGC 1365. Enquanto que o XMM-Newton revelou que a luz do ferro estava sendo dobrada, o NuSTAR provou que essa distorção vinda da gravidade do buraco negro e não das nuvens de gás na sua vizinhança. Os dados do NuSTAR sobre os raios-X de alta energia mostraram que o ferro estava tão perto do buraco negro que a gravidade deveria causar esse efeito de dobra. Com a possibilidade do obscurecimento das nuvens descartado, os cientistas podem agora usar as distorções na assinatura do ferro para medir a taxa de rotação do buraco negro. As descobertas podem ser aplicadas a alguns outros buracos negros, removendo assim as incertezas nas medidas anteriores da taxa de rotação dos mesmos.
Fonte: http://www.nasa.gov/mission_pages/nustar/news/nustar20130227.html
Related Posts Plugin for WordPress, Blogger...