16 de abr de 2013

A estrela mais distante já observada?

Embora invisível em comprimentos de onda ópticos, a cauda recheada de estrelas de IC 3418 aparece brilhante nesta composição que combina dados do observatório GALEX (Galaxy Evolution Explorer) da NASA (ultravioleta distante em tons de azul-escuro, perto do ultravioleta em tons de azul claro) e do SDSS (Sloan Digital Sky Survey), no visível em tons verde e vermelho.Crédito: NASA/JPL-Caltech/SDSS

Quão distante está a estrela mais longínqua que conseguimos observar? Youichi Ohyama (Academia Sinica, Taiwan) e Ananda Hota (Centro UM-DAE para Excelência nas Ciências Básicas, Índia) podem ter uma resposta. Usando observações ópticas e ultravioletas de vários instrumentos, a dupla identificou o que pode ser a estrela mais distante já observada espectroscopicamente - a uns vertiginosos 55 milhões de anos-luz de distância. O objecto é uma fonte compacta ilustrativamente chamada SDSS J122952.66+112227.8, uma bolha brilhante e azulada na cauda gasosa e grumosa da galáxia IC 3418, com 55.000 anos-luz de comprimento. IC 3418 está a cair na direcção do aglomerado de galáxias de Virgem, e é provavelmente formada devido à pressão dinâmica do quente meio intra-enxame, que arranca o frio gás galáctico em queda. O brilho da cauda em comprimentos de onda ópticos e ultravioletas sugere que as estrelas estão a formar-se dentro do seus invólucros, e por isso Ohyama e Hota decidiram observá-los em mais detalhe. Usando o espectrógrafo FOCAS acoplado ao Telescópio Subaru e imagens de telescópios terrestres e espaciais, a dupla descobriu que SDSS J1229 não tem muitas das linhas de emissão esperadas numa região de formação estelar. Em vez disso, as suas impressões digitais espectrais coincidem com a emissão de uma supergigante azul, uma estrela do tipo-O, massiva e quente, que chegou ao fim da sua fase de fusão de hidrogénio.
As observações ultravioletas do GALEX revelam brilhantes nós de formação estelar na cauda de IC 3418. A imagem do topo à esquerda é uma imagem óptica obtida pelo Telescópio do Canadá-França-Hawaii, que mostra a brilhante supergigante azul no meio. O espectro óptico da estrela (em baixo, à direita), obtido pelo Telescópio Subaru, mostra apenas uma linha brilhante de emissão vermelha (H-alpha) devido ao vento estelar e nenhum do outros sinais frequentes das regiões de formação estelar.
Crédito: NAOJ/CFHT/GALEX/Y. Ohyama e A. Hota
 
É impossível determinar se a sua emissão é proveniente de uma ou várias estrelas, mas os autores pensam que uma única supergigante azul seria brilhante o suficiente para explicar as características. A confirmação vai demorar: os instrumentos actuais simplesmente não têm a resolução necessária, por isso os astrónomos terão que esperar pelo planeado Telescópio de Trinta Metros ou por outros futuros parentes gigantes. "No meu ponto de vista, não é realmente importante saber se existe uma supergigante ou mais estrelas desse tipo," afirma Mattia Fumagalli (Universidade de Leiden, Holanda), que concorda que pelo menos uma tal estrela deve estar presente para explicar as características espectrais. "O estudo mostra claramente que a espectroscopia estelar de estrelas super-luminosas vai ser viável às distâncias do enxame de Virgem, onde as condições são muito diferentes das que temos na nossa Via Láctea." Normalmente, a formação de estrelas ocorre em nuvens moleculares gigantes, vastos complexos gasosos e frios, onde nós densos colapsam sob a sua própria gravidade para formar estrelas. As caudas amontoadas de IC 3418 e um punhado de outras galáxias são diferentes. Estas nuvens estão abalroando plasma com temperaturas 1 milhão de graus superiores, a milhares de quilómetros por segundo. Nestes ambientes a turbulência pode ser mais importante do que a gravidade, com remoinhos formando densas pepitas gasosas que podem arrefecer rapidamente e colapsar para formar estrelas. O estudo de IC 3418 e ambientes similares pode ajudar os astrónomos a melhor compreender a formação estelar nestes locais excêntricos.
Fonte: Astronomia On-Line
 

Explosão de Supernova Deixou Sua Marca Numa Bactéria na Terra

Sedimentos recolhidos numa amostra do fundo do mar podem abrigar ferro radioativo soprado por uma supernova distante a 2.2 milhões de anos atrás e que pode estar preservado numa bactéria fossilizada. Se confirmado, o ferro seria a primeira assinatura biológica de uma explosão estelar específica. Shawn Bishop, um físico na Universidade Técnica de Munique na Alemanha, relataram os achados preliminares no dia 14 de Abril de 2013, no encontro da Sociedade Física Americana em Denver, no Colorado. Em 2004, os cientistas relataram descobertas do isótopo ferro-60, que não se forma na Terra, em pedaço do assoalho oceânico do Oceano Pacífico.
 
 Eles calcularam quanto tempo esse isótopo radioativo tinha chegado na Terra usando a taxa de decaimento do mesmo ao longo do tempo. Eles concluíram então que esse isótopo havia se originado numa supernova na nossa vizinhança cósmica. Bishop imaginou se ele poderia encontrar sinais dessa explosão em registros fósseis na Terra. Alguns candidatos naturais são certas espécies de bactérias que que reúnem o ferro de seu ambiente para criar cristais magnéticos com 100 nanômetros de largura, que os micróbios usam para se orientarem dentro do campo magnético da Terra, de modo que elas possam navegar em condições preferenciais. Essas bactérias magnetotáteis vivem nos sedimentos localizados no fundo do mar.
 
Assim Bishop e seus colegas adquiriram partes de uma amostra de sedimentos do Oceano Pacífico do leste equatorial, datadas entre 1.7 milhões e 3.3 milhões de anos. Eles obtiveram amostras de sedimentos de uma camada correspondendo a períodos separados por aproximadamente 100000 anos, e trataram essas amostras com uma técnica química que extraiu o ferro-60, mas não o ferro das fontes não biológicas, como o solo que formaram os continentes. Os cientistas então passaram as amostras por um espectrômetro de massa para ver se alguma parte do ferro-60 estava presente. E estava. “Parece que tem algo ali”, disse Bishop aos repórteres no encontro de Denver.
 
 Os níveis de ferro-60 são minúsculos, mas o único lugar que eles parecem aparecer é em camadas datadas de aproximadamente 2.2 milhões de anos de vida. Esse sinal aparente do ferro-60, Bishop disse, poderia ser a parte remanescente das cadeias de magnetita (Fe3O4) formadas pelas bactérias no assoalho oceânico à medida que detritos radioativos da supernova eram derramados sobre elas desde a atmosfera depois que esses detritos cruzaram o espaço interestelar à velocidade da luz.
 
Ninguém está certo sobre qual estrela particular pode ter explodido, embora um artigo aponte que essa estrela possa ser uma associação estelar Scorpius-Centaurus a uma distância aproximada de 130 parsecs, ou 424 anos-luz do Sol. “Eu estou realmente muito animado sobre isso”, disse Brian Thomas, um astrofísico na Universidade de Washburn em Topeka no Kansas, que não esteve envolvido no trabalho. “A coisa legal é que essa descoberta está diretamente ligada a um evento específico”. “Para mim, filosoficamente falando, o charme é que isso está registrado num fóssil em nosso planeta”, disse Bishop. Ele e sua equipe estão agora trabalhando numa segunda amostra, também do Pacífico, para se ela também tem sinal do ferro-60.
Fonte: Cienctec

Aceleração de prótons em supernovas

IC 443
O cosmo é cheio de surpresas. Um novo estudo sobre as origens dos raios cósmicos em nossa galáxia acaba de ser elaborado. Essas partículas de alta energia, em sua maioria prótons, bombardeiam a Terra de todas as direções.   Os astrofísicos há muito suspeitam que ondas de choque da expansão de supernovas ancestrais – estrelas que explodiram há milhares de anos – aceleram prótons a altas velocidades, lançando-os pela galáxia para eventualmente colidir com a Terra. Mas foram necessários quatro anos para que uma equipe de pesquisadores de um dos principais observatórios espaciais da NASA confirmasse essa suspeita com evidências sólidas.    Stefan Funk e Yasunobu Uchiyama da Universidade Stanford, Takaaki Tanaka da Universidade de Kyoto e seus colegas usaram um instrumento do telescópio espacial Fermi de raios gama para monitorar dois remanescentes de supernovas, conhecidos como IC 443 e W44, que explodiram há cerca de 10 mil anos, relativamente próximas da Via Láctea. Os raios gama são a variedade de fótons de mais alta energia , com milhões ou até bilhões de vezes a energia de um fóton de luz visível. Com os raios gama que detectamos com o telescópio Fermi, mostramos que os raios cósmicos são acelerados em remanescentes de supernova”, declarou Funk em uma conferência da Associação Americana para o Avanço da Ciência, em Boston, transmitida pela internet. “Nos dois remanescentes de supernova os raios gama tem um disparo de nuvem de partículas característico e único que agora, pela primeira vez, fornece evidências incontestáveis de que são prótons acelerados”.
© Herschel e XMM-Newton (W44)

O disparo de nuvem é um déficit de raios gama de baixa energia se comparados com suas contrapartes mais energéticas no espectro de fótons emitidos pelos remanescentes de supernova. Isso sinaliza uma origem de raios gama a partir de um decaimento de partículas chamado de píons neutros, que são produzidos quando prótons de alta energia (a partir da onda de choque de uma supernova, por exemplo) colidem com prótons mais comuns em densas nuvens de gás interestelar. A produção de píons neutros nos dois locais remanescentes de supernovas sinaliza, portanto, que os objetos de fato aceleraram prótons a velocidades tremendas.   Os astrofísicos precisam se basear em evidências observacionais como píons neutros e os raios gamas que eles produzem porque os raios cósmicos em si – os prótons de alta energia – carregam carga elétrica e, portanto, são desviados por campos magnéticos conforme viajam pela galáxia. E aí reside o apelo de fótons de raios gama, que não carregam carga elétrica. “Esses raios gama podem ser produzidos por prótons energéticos e então viajar em linhas retas e nos dizer onde os prótons são acelerados, onde os raios cósmicos são produzidos”, adiciona Funk.   Os dois objetos que Funk e seus colegas estudaram têm raios gama em intensidade superior a qualquer outro remanescente de supernova, o que os torna alvos óbvios para a busca. Mas mesmo assim, distinguir a produção de raios gama brilhantes do material ao redor de estrelas mortas levou algum tempo. O problema é que a assinatura que está sendo procurada está no limite do espectro de energia do detector. E nessas energias baixas, os raios gama não deixam muita informação no detector.
Fonte: http://www.sciencemag.org/
Related Posts Plugin for WordPress, Blogger...