Como a morte estelar pode gerar jatos celestes gêmeos?



Nebulosa do Ovo Podre

Os astrônomos sabem que enquanto as grandes estrelas podem acabar suas vidas como supernovas cataclísmicas, as estrelas pequenas terminam suas vidas como nebulosas planetárias – nuvens de gás e poeira brilhantes e coloridas. Em décadas recentes essas nebulosas, uma vez pensadas como sendo na maior parte das vezes sendo esféricas,  tem-se observado frequentemente que elas podem emitir poderosos jatos bipolares de gás e poeira. Mas como as estrelas esféricas se desenvolvem para produzir nebulosas planetárias? Em artigo teórico publicado no Monthly Notices of the Royal Astronomical Society,  um professor da Universidade de Rochester e seu aluno de graduação concluíram que somente um sistema binário em forte interação – ou uma estrela e um planeta massivo – pode ser viável para dar origem a esses poderosos jatos. Quando essas estrelas menores exaurem o hidrogênio elas começam a se expandir e se tornam estrelas conhecidas como Asymptotic Giant Branch, ou AGB. Essa fase na vida das estrelas dura 100000 anos. Em algum ponto, algumas dessas estrelas AGB, que representam o último estágio esférico distendido na vida das estrelas de pouca massa, tornam-se nebulosas pré – planetárias,  que não são esféricas. O que acontece para mudar essas estrelas AGB esféricas em nebulosas não esféricas,  com dois jatos sendo atirados em direções opostas?”, pergunta, Eric Blackman, professor de física e astronomia em Rochester. “Nós temos tentado entender melhor o que acontece nesse estágio”.

Para os jatos se formarem nas nebulosas, as estrelas AGB esféricas têm que se tornarem não esféricas e Blackman diz que os astrônomos aceeditam que isso ocorra pois as estrelas AGB não são sempre estrelas simples, mas frequentemente partes de um sistema binário.  Acredita-se que os jatos sejam produzidos pela ejeção de material que é primeiro puxado e adquirido, ou acrescido, de um objeto para outro e que espiraliza no chamado disco de acresção. Todos esses cenários,  envolvem duas estrelas ou uma estrela e um planeta massivo, mas essa é uma regra dura pois o núcleo das AGBs, onde os discos se formam, são muito pequenos para serem resolvidos por telescópios.  Blackman e seu estudante, Scott Lucchini, querem determinar se os sistemas binários podem ser bem separados e ter uma interação fraca, ou se eles precisam estar próximos e interagirem fortemente.

Estudando os jatos de nebulosas planetárias e pré-planetárias, Blackman e Lucchini,  foram capazes de conectar a energia e o momento envolvido no processo de acresção com isso nos jatos; o processo de acresção é o que em efeito fornece o combustível para esses jatos. À medida que a massa cresce em um dos discos ela perde energia gravitacional. Ela é então convertida em energia cinética e em momento dos jatos expelidos, que é a massa que é expelida numa certa velocidade. Blackman e Lucchini determinaram a potência mínima e o mínimo fluxo de massa que esses processos de acresção, precisam para produzir os jatos observados. Eles então compararam os requerimentos para os modelos específicos de acresções, que haviam previstos uma potência específica e uma taxa de fluxo de massa.

Eles descobriram que somente dois tipos de modelo de acresção,  ambos envovlendo os sistemas binários com mais forte interação,  poderiam criar essas nebulosas pré-planetárias com jatos. No primeiro tipo de modelo, o “Roche Lobe Overflow”, as companheiras estão tão próximas que o envelope estelar da AGB é puxado para o disco ao redor da companheira. No segundo tipo de modelo, ou “Envelope Comum”, a companheira está ainda mais perto que chega a entrar totalmente dentro do envelope da AGB, de modo que as duas estrelas passam a ter um envelope comum.

De dentro desse envelope comum, discos com altas taxas de acresção podem se formar ao redor da companheira, a partir de material da AGB, ou a companheira pode ser absorvida por um disco ao redor do núcleo da AGB. Ambos os cenários poderiam fornecer energia e momento suficiente para produzir os jatos que têm sido observados. O nome nebulosas plantárias foi originalmente proposto pelo astrônomo William Herschel, que as descobriu primeiro nos anos de 1780, e acreditava que elas eram na verdade planetas gasosos em formação.

Embora o nome tenha persistido, hoje, sabemos que elas são de fato o estágio finalde vida de estrelas de pouca massa, e somente se desenvolvem em planetas se uma companheira binária em um dos cenários de acresção descritos acima, for de fato um planeta. Nebulosas planetárias e pré-planetárias são diferentes na natureza da luz que elas produzem; as nebulosas pré-planetárias refletem a luz, enquanto que as nebulosas planetárias brilham por ionização (quando os átomos perdem ou ganham elétrons). Nebulosas pré-planetárias atiram dois jatos de gás e poeira, o último formando em jatos à medida que o fluxo se expande e resfria. Essa poeria, reflete a luz produzida pelo núcleo mais quente. Nas nebulosas planetárias, que acredita-se, seja uma evolução das nebulosas pré-planetárias, o núcleo é exposto e a radiação mais quente que ela emite ioniza o gás, nos jatos agora mais fracos, que voltam a brilhar.

LinkWithin

Related Posts Plugin for WordPress, Blogger...

Postagens mais visitadas deste blog

Tipos de Estrelas

Galéria de Imagens - Os 8 planetas de nosso Sistema Solar

Nova Classificação do Sistema Solar

Como surgiu o primeiro átomo?

Os satélites naturais do Sistema Solar

Johannes Kepler

Veja os 10 maiores mistérios das estrelas

Isaac Newton