26 de mar de 2014

Primeiro sistema de anéis descoberto em torno de um asteróide

Observações obtidas em diversos locais da América do Sul, incluindo o Observatório de La Silla do ESO, levaram à descoberta surpreendente de que o asteroide distante Chariklo se encontra rodeado por dois anéis densos e estreitos. Este é o menor objeto já descoberto com anéis, e apenas o quinto corpo no Sistema Solar - depois dos planetas gigantes Júpiter, Saturno, Urano e Netuno - com esta caraterística. A origem dos anéis permanece um mistério, no entanto pensa-se que podem ser o resultado de uma colisão que criou um disco de detritos. Além dos anéis de Saturno, que são um dos mais bonitos espetáculos no céu, outros anéis, menos proeminentes, também foram encontrados em torno dos outros planetas gigantes. Apesar de buscas cuidadosas, nunca se encontraram anéis em volta de outros objetos menores do Sistema Solar.

Todos os objetos que orbitam em torno do Sol e que são muito pequenos, ou seja, que não possuem massa suficiente para que a sua própria gravidade lhes dê uma forma praticamente esférica, são definidos pela União Astronômica Internacional  (IAU) como sendo corpos menores do Sistema Solar. Esta classe inclui atualmente a maioria dos asteroides do Sistema Solar, os objetos próximos da Terra, os asteroides troianos de Marte e Júpiter, a maioria dos Centauros, a maioria dos objetos Trans-Netunianos e os cometas. Informalmente, os termos asteroide e corpo menor são frequentemente usados para indicar a mesma coisa.

Agora, observações do longínquo asteroide Chariklo, feitas quando este passava em frente a uma estrela, mostraram que ele também se encontra rodeado por dois anéis estreitos. “Não estávamos à procura de anéis, nem pensávamos que pequenos corpos como o Chariklo os poderiam ter, por isso esta descoberta, e a quantidade extraordinária de detalhes que obtivemos do sistema, foi para nós uma grande surpresa!”, diz Felipe Braga-Ribas (Observatório Nacional/MCTI, Rio de Janeiro, Brasil), que preparou a campanha de observações e é o autor principal do novo artigo científico que descreve estes resultados. 
   
Chariklo é o maior membro de uma classe de objetos conhecidos por Centauros, que orbitam o Sol entre Saturno e Urano, no Sistema Solar externo. Os Centauros são pequenos corpos com órbitas instáveis no Sistema Solar exterior, que atravessam as órbitas dos planetas gigantes. Como as suas órbitas são frequentemente perturbadas, espera-se que permaneçam nestas órbitas apenas alguns milhões de anos. Os Centauros diferem dos muito mais numerosos corpos do Cinturão de Asteroides, situado entre as órbitas de Marte e Júpiter, e podem ter vindo da região do Cinturão de Kuiper. O seu nome deriva dos centauros míticos porque, tal como eles, partilham algumas características de duas espécies diferentes, neste caso cometas e asteroides. Chariklo parece ser mais como um asteroide, não se tendo descoberto nele qualquer atividade cometária.

Previsões da sua órbita mostraram que passaria em frente da estrela UCAC4 248-108672 no dia 3 de junho de 2013, quando observado a partir da América do Sul. Assim, com o auxílio de telescópios em sete sítios diferentes, incluindo o telescópio dinamarquês de 1,54 metros e o telescópio TRAPPIST, ambos situados no Observatório de La Silla do ESO, no Chile, os astrônomos puderam observar a estrela desaparecer durante alguns segundos, momento em que a sua luz foi bloqueada pelo Chariklo, num fenômeno conhecido por ocultação. Esta é a única maneira de saber o tamanho e forma exatos de um objeto tão remoto - Chariklo tem apenas 250 quilômetros de diâmetro e encontra-se a mais de um bilhão de quilômetros de distância. Mesmo com os melhores telescópios, um objeto tão pequeno e distante aparece apenas como um tênue ponto de luz. 
 
No entanto, eles acabaram descobrindo muito mais do que esperavam. Alguns segundos antes, e também alguns segundos depois, da ocultação principal ainda houveram duas quedas de luz, ligeiras e muito curtas, no brilho aparente da estrela. Os anéis de Urano e os arcos de anel em torno de Netuno foram descobertos de forma semelhante, durante ocultações em 1977 e 1984, respectivamente; onde os telescópios do ESO estiveram também envolvidos na descoberta dos anéis de Netuno.
Algo em torno de Chariklo estava bloqueando a luz! Ao comparar as observações feitas nos diversos locais, a equipe pôde reconstruir não apenas a forma e o tamanho do objeto propriamente dito, mas também a espessura, orientação, forma e outras propriedades dos anéis recém descobertos.  

A equipe descobriu que o sistema de anéis é composto por dois anéis bastante confinados, com apenas sete e três quilômetros de largura, respectivamente, separados entre si por um espaço vazio de nove quilômetros, e tudo isto em torno de um pequeno objeto que orbita além da órbita de Saturno. “Acho extraordinário pensar que fomos capazes de detectar, não apenas o sistema de anéis, mas também precisar que este sistema é constituído por dois anéis claramente distintos”, acrescenta Uffe Gråe Jørgensen (Instituto Niels Bohr, Universidade de Copenhague, Dinamarca), integrante da equipe. “Tento imaginar como será estar sobre a superfície deste corpo gelado, tão pequeno que um carro esportivo veloz poderia atingir a velocidade de escape e lançar-se no espaço, e olhar para cima para um sistema de anéis com 20 quilômetros de largura e situado 1.000 vezes mais próximo do que a Lua está da Terra”. A velocidade de escape é cerca de 350 km/h! 
  
Embora muitas questões permaneçam ainda sem resposta, os astrônomos pensam que este tipo de anel deve ter se formado a partir dos restos deixados depois de uma colisão. Os restos teriam ficado confinados como dois estreitos anéis devido à presença de pequenos satélites, que supostamente existirão. “Por isso, além dos anéis, é provável que Chariklo tenha também, pelo menos, um pequeno satélite à espera de ser descoberto”, acrescenta Felipe Braga Ribas. Os anéis poderão mais tarde dar origem à formação de um pequeno satélite. Tal sequência de eventos, a uma escala muito maior, pode explicar a formação da nossa própria Lua nos primeiros dias do Sistema Solar, assim como a origem de muitos outros satélites em órbita de planetas e asteroides. 
   
Os líderes do projeto deram aos anéis os nomes informais de Oiapoque e Chuí, dois rios que se encontram próximos dos extremos norte e sul do Brasil, respectivamente. Estes nomes são apenas para uso informal, os nomes oficiais serão atribuídos mais tarde pela IAU, segundo regras pré-estabelecidas.
Este trabalho foi descrito no artigo científico intitulado “A ring system detected around the Centaur (10199) Chariklo”, de F. Braga-Ribas et al., cujos novos resultados foram publicados hoje (online) na revista Nature.
Fonte: ESO

A poeira cósmica que envolve a Nebulosa de Órion


m 42
O que existe ao redor de um berçário cósmico, onde estrelas estão se formando? No caso da Nebulosa de Orion, poeira. O campo inteiro de Orion, localizado a cerca de 1600 anos-luz de distância da Terra, está inundado com intrigantes e pitorescos filamentos de poeira. Opaca com relação a luz visível, a poeira é criada na atmosfera externa de estrelas massivas frias e expelida por fortes ventos de partículas. O Trapézio e outros aglomerados de formação de estrelas estão mergulhados na nebulosa. Os filamentos de poeira ao redor da M42 e da M43 aparecem em cinza na imagem acima, enquanto que o gás central brilhante é destacado em marrom e azul. Durante os próximos milhões de anos, boa parte da poeira de Orion irá vagarosamente ser destruída pelas muitas estrelas que estão agora em formação, ou dispersada na galáxia.

A assinatura dos extraterrestres


Como detectar vida alienígena separada de nós por vários anos-luz de distância? Não é um problema trivial, mas um grupo de pesquisadores liderados pela biofísica Claudia Lage, da Universidade Federal do Rio de Janeiro, está trabalhando nisso. O segredo é identificar como a presença de moléculas diretamente atreladas à vida pode ser revelada a partir da análise da luz vinda desses planetas distantes.  Peguemos um exemplo concreto: o planeta Kepler-62e, localizado a cerca de 1.200 anos-luz de nós na constelação de Lira. Ele tem um diâmetro 60% maior que o terrestre e orbita ao redor de uma estrela de tipo K, um pouco menor que o Sol, completando uma volta a cada 122 dias. Sua idade é mais ou menos a mesma que a da Terra, e sua composição possivelmente é similar. Como podemos saber se ele abriga uma biosfera?  O instigante planeta foi descoberto ao passar repetidas vezes à frente de sua estrela ao completar voltas e mais voltas em torno dela, produzindo uma ligeira redução de brilho do astro central a cada passagem. Essas variações foram detectadas pelo satélite Kepler, da Nasa, o que permitiu estimar seu tamanho e sua órbita, determinando que ele está na chamada zona habitável — região do sistema em que um planeta como o nosso abrigaria água em estado líquido.

A
beleza do achado por este método é que agora os astrônomos podem tentar olhar para aquela direção no exato momento em que o Kepler-62e estiver à frente de sua estrela. A luz individual do planeta é muito diminuta para ser detectada diretamente com os instrumentos atuais, mas é possível ver uma certa quantidade de luz da estrela que atravessa a atmosfera do planeta pelas bordas e chega até nós. Ao analisá-la com um instrumento chamado espectrógrafo acoplado a um telescópio — separando a luz original em um arco-íris de frequências — é possível identificar a “assinatura” de diversos compostos presentes no ar daquele mundo. 

 É assim que se pretende identificar certos gases simples na atmosfera de planetas afastados. Se o Kepler-62e tiver oxigênio e ozônio, por exemplo, eles serão um indicativo de que algo pode estar vivo lá para produzir esses gases. Na Terra, o oxigênio da atmosfera vem da fotossíntese, produzida por plantas e bactérias. Mas quem vai dizer que o oxigênio alienígena é mesmo de origem biológica?  É aí que entra o esforço de Lage e seus colegas. Eles querem estabelecer assinaturas espectrais que estejam relacionadas diretamente com a vida. Ou seja, em vez de procurar oxigênio, que é um indicativo indireto de atividade biológica, o grupo quer observar coisas como clorofila — a molécula responsável pela fotossíntese nas plantas e que jamais foi vista em nada que não estivesse vivo.

 QUÍMICA ALIENÍGENA
Lage esteve apresentando uma versão preliminar de seu trabalho na conferência de astrobiologia promovida pelo Vaticano e pela Universidade do Arizona, na semana passada. Feito em parceria com um grupo da Universidade de Nice, na França, o esforço consiste em basicamente modelar como moléculas essenciais à vida terrestre apareceriam no espectro de luz de planetas distantes.  Uma coisa que pode ocorrer ao leitor é que a evolução da vida está cheia de fenômenos contingentes, aleatórios. Quem garante que clorofila vá aparecer na biologia de outros mundos como apareceu na nossa?  Aí reside uma das sofisticações do trabalho. Ele tenta identificar assinaturas ligadas a famílias inteiras de moléculas.

 Em vez de procurar um dos tipos de clorofila da vida terrestre, o grupo quer identificar a assinatura das porfirinas — compostos orgânicos em forma de anel que estão presentes em uma série muito variada de moléculas biológicas fundamentais. A clorofila é uma delas. Mas também há porfirina, por exemplo, na hemoglobina, proteína responsável pelo transporte de oxigênio em criaturas como nós.  O anel porfirínico é essencial para a vida”, disse Lage ao Mensageiro Sideral. “E temos razões para acreditar que ele será incorporado em todas as formas de vida, porque sua formação é fruto de uma reação termodinamicamente favorecida.” Trocando em miúdos, a pesquisadora quer dizer que a natureza adora fabricar porfirina.

OBSERVAÇÃO
Em paralelo ao desenvolvimento dos padrões espectrais teóricos, que precisam ser modelados levando em conta diferentes padrões de temperatura e pressão possivelmente encontrados em outros planetas, o que os pesquisadores querem mesmo é de fato encontrar esses padrões em mundos distantes. Detecção de verdade.  Por isso, Bruno Lopez, do Observatório da Costa Azul, na França, se empolgou ao conhecer o trabalho de Lage e buscou uma parceria. Ele é o pesquisador-chefe (“principal investigator”, no linguajar cientifiquês) de um novo instrumento sendo desenvolvido para o VLT, grande quarteto de telescópios do ESO (Observatório Europeu do Sul), instalado no Chile.

Chamado de MATISSE, esse aparato será capaz de obter espectros de alta resolução na frequência do infravermelho — a ideal para a busca de assinaturas de moléculas biológicas.  O instrumento deve ser instalado no ano que vem, e em 2016 já será possível iniciar a caça. Até lá, certamente os astrônomos já terão encontrado outros planetas nas zonas habitáveis de suas respectivas estrelas que sirvam como alvos em uma busca preliminar. O Kepler-62e provavelmente estará entre eles.  Nunca estivemos tão perto de confirmar a presença de vida fora da Terra. Só de pensar que pode acontecer ainda nesta década dá um nó na garganta. Quem viver, verá.
Fonte: Mensageiro Sideral - Folha

Girassol espacial vai procurar exoplanetas habitáveis

Girassol espacial vai procurar exoplanetas habitáveis

As pétalas do girassol ajudarão a estudar a atmosfera dos exoplanetas conforme eles saem do "eclipse" artificial gerado pela estrutura. [Imagem: NASA/JPL]

Sombreiro de estrelas

Uma nave espacial parecida com um girassol gigante poderá ser a próxima solução tecnológica para identificar planetas rochosos parecidos com a Terra em torno de estrelas próximas. O primeiro protótipo da estrutura, chamada Starshade (sombra das estrelas) começou a ser testado no Laboratório de Propulsão a Jato, da NASA. O telescópio espacial Kepler descobriu centenas de planetas que orbitam outras estrelas, alguns dos quais são um pouco maiores do que a Terra e se encontram na zona habitável, a região em torno da estrela onde a temperatura é adequada para a existência de água em estado líquido.

Mas para identificar planetas gêmeos da Terra de forma conclusiva, Jeremy Kasdin, da Universidade de Princeton, afirma que o próximo passo será fotografar e caracterizar os espectros desses planetas, ou seja, suas assinaturas químicas, que fornecem pistas claras sobre se esses mundos poderiam suportar a vida terrestre. Kasdin então propôs a criação do Starshade, que foi projetado para ajudar a tirar essas fotos de exoplanetas bloqueando a luz muito mais brilhante das suas estrelas.

Em termos simples, o girassol espacial fará para um telescópio o que sua mão faz para bloquear a luz do Sol para tirar uma fotografia de alguém contra a luz. A ideia é lançar o girassol e o telescópio no mesmo foguete. Uma vez no espaço, a estrutura se distancia do telescópio, desfralda suas pétalas e então se posiciona para bloquear a luz das estrelas e deixar o telescópio fazer seu trabalho. Embora o protótipo já esteja em testes no laboratório, ainda não há previsão de quando a estrutura será lançada ao espaço.
Fonte: Inovação Tecnológica


Related Posts Plugin for WordPress, Blogger...