27 de mai de 2014

Estudo sugere que o Universo não está se expandindo

This image shows a star forming region in a nearby galaxy known as the Large Magellanic Cloud. Image credit: ESA / Hubble.

Uma equipe de astrofísicos liderada por Eric Lerner, do centro de pesquisa Lawrenceville Plasma Physics (EUA), diz ter encontrado novas evidências, com base em medidas detalhadas do tamanho e brilho de centenas de galáxias, de que o universo não está em expansão como se pensava anteriormente.O Prêmio Nobel de Física de 2011 foi atribuído conjuntamente a três cientistas que descobriram que a expansão do universo está acontecendo de maneira acelerada. Os físicos Saul Perlmutter, Brian Schmidt e Adam Riess chegaram a essa conclusão estudando as supernovas do tipo Ia – as violentas explosões resultantes da morte de estrelas anãs brancas.  O Prêmio Nobel de Física de 2011 foi atribuído conjuntamente a três cientistas que descobriram que a expansão do universo está acontecendo de maneira acelerada. Os físicos Saul Perlmutter, Brian Schmidt e Adam Riess chegaram a essa conclusão estudando as supernovas do tipo Ia – as violentas explosões resultantes da morte de estrelas anãs brancas.

Eles mediram a maneira como a luz de supernovas Ia se distorciam para ver a rapidez com que as galáxias estão se afastando umas das outras, ou seja, o quão rápido o universo está se expandindo. A partir da análise, foi concluído que todas as estrelas, galáxias e aglomerados de galáxias estão se movendo cada vez mais rápido. Outras medidas de galáxias brilhantes e distantes, como as feitas por cientistas da Universidade de Tóquio, no Japão, através de lentes gravitacionais, também indicaram que o universo estava “crescendo” como um balão gigante. Também surgiram teorias um pouco diferentes que diziam o universo não estava expandindo, mas sim ganhando massa. Agora, um novo estudo entra na contramão de todas essas hipóteses dizendo que a expansão do universo simplesmente não existe.

O ESTUDO
Os cientistas testaram uma das previsões marcantes da teoria do Big Bang, de que a geometria comum não funciona em grandes distâncias. Segundo a geometria comum, no espaço que nos rodeia (na Terra, no sistema solar e na Via Láctea), conforme objetos semelhantes estão mais longes, parecem mais fracos e menores. O seu brilho de superfície, que é o brilho por unidade de área, mantém-se constante. Em contraste, a teoria do Big Bang nos diz que, em um universo em expansão, objetos mais distantes devem parecer mais fracos, só que maiores. Nesta teoria, o brilho da superfície diminui com a distância. Além disso, a luz é esticada conforme o universo é expandido, o que diminui ainda mais o brilho. Assim, em um universo em expansão, galáxias mais distantes devem ser centenas de vezes mais fracas do que o brilho da superfície de galáxias próximas semelhantes, o que as tornaria indetectáveis com os telescópios atuais.

E não é isso que as observações mostram.

No novo estudo, os pesquisadores cuidadosamente compararam o tamanho e o brilho de cerca de mil galáxias próximas e muito distantes. Eles escolheram as galáxias espirais mais luminosas para as comparações, combinando a luminosidade média das amostras próximas e distantes. Ao contrário do que a previsão dita, eles descobriram que o brilho da superfície das galáxias próximas e distantes são idênticos.  Estes resultados são consistentes com o que seria esperado da geometria normal se o universo não estivesse se expandindo. Ou seja, os resultados estão em contradição com o escurecimento drástico do brilho superficial previsto pela hipótese universo em expansão.

“Claro, você pode supor que as galáxias distantes eram muito menores e, portanto, tinham centenas de vezes mais brilho de superfície intrínseco no passado, e que, apenas por coincidência, o escurecimento do Big Bang cancela exatamente esse maior brilho em todas as distâncias para produzir a ilusão de um brilho constante, mas isso seria uma grande coincidência”, explica Lerner. Esse não foi o único resultado surpreendente da pesquisa. Para aplicar o teste de brilho de superfície, proposto pela primeira vez em 1930 pelo físico Richard C. Tolman, a equipe teve que determinar a luminosidade real das galáxias, de modo a corresponder galáxias próximas e distantes.

Para isso, os astrofísicos vincularam a distância das galáxias ao seu redshift (desvio para o vermelho, que corresponde a uma alteração na forma como a frequência das ondas de luz é observada no espectroscópio em função da velocidade relativa entre a fonte emissora e o receptor observador). Eles participaram do pressuposto de que a distância é proporcional ao desvio para o vermelho em todas as distâncias, tal como foi verificado no universo próximo. Em seguida, os pesquisadores checaram essa relação entre redshift e distância com os dados do brilho de supernovas que foram usados para medir a hipótese da expansão acelerada do universo.

“É surpreendente que as previsões desta fórmula simples são tão boas quanto as previsões da teoria do universo em expansão, que incluem correções complexas para a matéria escura e a energia escura hipotéticas”, disse um dos coautores do estudo, Dr. Renato Falomo, do Observatório Astronômico de Padova, na Itália. O Dr. Riccardo Scarpa do Instituto de Astrofísica de Canarias, na Espanha, outro coautor do estudo, acrescentou: “Mais uma vez você pode pensar nisso como mera coincidência, mas seria uma segunda grande coincidência”.

E AGORA?
Se o universo não está se expandindo, o desvio para o vermelho da luz com o aumento da distância deve ser causado por algum outro fenômeno – algo que acontece com a própria luz que viaja através do espaço. “No momento, não estamos especulando sobre o que poderia causar esse desvio”, afirma Lerner. “No entanto, tal desvio para o vermelho, o qual não está associada com a expansão, pode ser observado com a sonda adequada dentro do nosso sistema solar no futuro”. O novo estudo foi publicado na revista International Journal of Modern Physics D.
Fonte: SciNews

Estrelas como nosso sol podem comer frequentemente planetas como a Terra




Ao que tudo indica, estrelas não são muito carinhosas com seus filhos.
star_illustration_large
Um novo estudo sugere que algumas estrelas do mesmo tipo que o nosso sol são “comedoras de Terras”, ou seja, englobam material rochoso do qual os planetas terrestres como o nosso (e como Marte e Vênus) são feitos durante o seu desenvolvimento. De acordo com os pesquisadores, isso muda a antiga questão “como as estrelas formam os planetas” para uma outra pergunta misteriosa:

 “quantos planetas que uma estrela forma não são mais tardes comidos por ela?”.

De fato, os resultados do estudo indicam que muitos planetas podem não conseguir evitar ser comidos por sua estrela-mãe. Trey Mack, um graduando em astronomia na Universidade de Vanderbilt (EUA), desenvolveu um modelo que estima o efeito que essa “dieta terrestre” tem sobre a composição química de uma estrela. A assinatura química dessa dieta pode nos ajudar a detectar sistemas de estrelas comedoras de Terra, bem como sistemas planetários mais parecidos com o nosso sistema solar.

Composição estelar x planetas filhos

Estrelas consistem em mais de 98% de hidrogênio e hélio. Todos os outros elementos compõem menos de 2% da sua massa. Astrônomos definiram arbitrariamente que todos os elementos mais pesados que o hidrogênio e o hélio eram “metais” e cunharam o termo “metalicidade” para se referir à relação entre a abundância relativa de ferro ao hidrogênio na composição química de uma estrela. Desde meados da década de 1990, quando os pesquisadores desenvolveram a capacidade de detectar largamente planetas extra-solares (fora do nosso sistema solar), vários estudos tentam vincular a metalicidade das estrelas com a formação de planetas. Em um desses estudos, cientistas do Los Alamos National Laboratory, nos EUA, argumentaram que estrelas com alta metalicidade são mais propensas a desenvolver sistemas planetários do que aquelas com baixa metalicidade. Outro estudo concluiu que os planetas quentes do tamanho de Júpiter são encontrados predominantemente orbitando estrelas com alta metalicidade, enquanto planetas menores são encontrados circulando estrelas com uma vasta gama de conteúdo de metal.

A pesquisa

“Trey mostrou que nós podemos modelar a assinatura química de uma estrela em detalhe, elemento por elemento, e determinar como sua assinatura é alterada pela ingestão de planetas como a Terra”, disse o professor de astronomia Keivan Stassun, que supervisionou o estudo. Com base no trabalho do coautor Simon Schuler, da Universidade de Tampa (EUA), que expandiu o exame da composição química das estrelas além do seu teor de ferro, Trey Mack observou a abundância de 15 elementos específicos relativos ao do sol, focando particularmente em elementos como o alumínio, silício, cálcio e ferro, que têm pontos de fusão mais altos que 600 graus Celsius, porque estes são os materiais refratários que servem como blocos de construção para planetas como a Terra. Mack, Schuler e Stassun decidiram aplicar esta técnica para estudar o par binário de estrelas HD 20781 e HD 20782.

Ambas devem ter vindo da mesma nuvem de poeira e gás, e assim ter começado com as mesmas composições químicas. Este par em particular é o primeiro a ser descoberto em que ambas as estrelas têm planetas próprios. Elas são estrelas anãs de classe G semelhantes ao sol. Uma delas é orbitada de perto por dois planetas do tamanho de Netuno. A outra possui apenas um planeta do tamanho de Júpiter que segue uma órbita excêntrica. A diferença nos seus sistemas planetários torna o par ideal para o estudo da ligação entre exoplanetas e a composição química dos seus hospedeiros estelares. Quando analisado o espectro das duas estrelas, os astrônomos descobriram que a abundância relativa dos elementos refratários foi significativamente maior do que a do sol. Eles também descobriram que quanto maior a temperatura de fusão de um elemento particular, maior era a sua abundância, uma tendência que serve como uma assinatura convincente da ingestão de material rochoso, como uma “Terra”.

Os cientistas calcularam que cada uma das estrelas teria que consumir de 10 a 20 massas terrestres de material rochoso para produzir essas assinaturas químicas. Especificamente, a estrela com o planeta do tamanho de Júpiter parece ter engolido dez massas terrestres, enquanto a estrela com os dois planetas do tamanho de Netuno engoliu 30. Os resultados apoiam a proposição de que a composição química de uma estrela e a natureza do seu sistema planetário estão ligadas. Imagine que a estrela originalmente formou planetas rochosos como a Terra. Além disso, imagine que também formou planetas gigantes gasosos como Júpiter”, disse Mack.

“Os planetas rochosos se formaram na região próxima à estrela onde é quente, e os gigantes de gás na parte exterior do sistema planetário, onde é frio. No entanto, uma vez que os gigantes gasosos estavam totalmente formados, eles começaram a migrar para o interior e, conforme fizeram isso, a sua gravidade começou a puxar os planetas rochosos interiores. Com a quantidade certa de ‘reboque’, um gigante de gás pode facilmente forçar um planeta rochoso a ‘mergulhar’ na estrela. Se planetas rochosos suficientes forem engolidos por ela, vão deixar uma assinatura química específica que podemos detectar”. Os astrônomos especulam que o motivo pelo qual a estrela com os dois planetas do tamanho de Netuno ingeriu mais material terrestre do que sua irmã gêmea é porque os dois planetas foram mais eficientes em empurrar planetas para sua estrela do que o único planeta do tamanho de Júpiter.

No futuro

Seguindo a lógica do estudo, é improvável que qualquer uma dessas gêmeas binárias possua agora planetas terrestres. Em uma estrela, os dois planetas do tamanho de Netuno estão orbitando a estrela de muito perto, a um terço da distância entre a Terra e o sol. Na outra, a trajetória do planeta do tamanho de Júpiter roça a estrela, passando mais perto do que a órbita de Mercúrio no ponto de maior aproximação do sol.

Se a assinatura química de estrelas de classe G que engolem planetas rochosos provar ser universal, quando os cientistas encontrarem estrelas com assinaturas químicas semelhantes a esse par, serão capazes de concluir que os seus sistemas planetários devem ser muito diferentes do nosso e que elas provavelmente não têm planetas rochosos internos. “E quando encontrarmos estrelas que não têm essas assinaturas, então elas serão boas candidatas para hospedar sistemas planetários semelhantes ao nosso”, conclui Mack.
Fonte: Hypescience.com

WISE descobre buraco na teoria "DONUT" dos buracos negros

aglomerado da Fornalha
Esta imagem mostra galáxias agrupadas no enxame da Fornalha, localizado a 60 milhões de anos-luz da Terra. A imagem foi obtida pelo WISE, mas foi melhorada artisticamente para ilustrar a ideia que o aglomerado estará, em média, rodeado por grandes halos de matéria escura (púrpura).
Crédito: NASA/JPL-Caltech

Uma pesquisa de mais de 170.000 buracos negros supermassivos com o WISE (Wide-field Infrared Survey Explorer) da NASA, fez os astrónomos reexaminarem uma teoria com décadas acerca dos vários aspectos destes objectos interestelares. A teoria unificada dos buracos negros supermassivos e activos, desenvolvida pela primeira vez no final da década de 1970, foi criada para explicar o porquê dos buracos negros, embora de natureza semelhantes, poderem parecer completamente diferentes. Alguns parecem estar envoltos em poeira, enquanto outros estão expostos e são fáceis de discernir.

O modelo unificado responde a esta pergunta, propondo que cada buraco negro está rodeado por uma estrutura de poeira, em forma de donut, chamada de toro. Dependendo da orientação destes "donuts" no espaço, os buracos negros assumem diversas aparências. Por exemplo, se o donut estiver posicionado de lado (a partir da perspectiva da Terra), o buraco negro está escondido da nossa vista. Se o donut for observado por cima ou por baixo, o buraco negro encontra-se exposto. No entanto, os novos resultados do WISE não corroboram esta teoria. Os cientistas descobriram evidências de que algo que não uma estrutura em forma de donut pode, em algumas circunstâncias, determinar se o buraco negro está ou não escondido.

A equipa ainda não determinou qual a causa, mas os resultados sugerem que o modelo unificado, de donut, não responde a todas as questões. "A nossa descoberta revela uma nova característica dos buracos negros activos que desconhecíamos, mas os detalhes permanecem um mistério," afirma Lin Yan do IPAC (Infrared Processing and Analysis Center) da NASA, com sede no Instituto de Tecnologia da Califórnia em Pasadena, EUA. "Esperamos que o nosso trabalho inspire estudos futuros para entender melhor estes objectos fascinantes."

Yan é a segunda autora da pesquisa aceite para publicação na revista Astrophysical Journal. O autor principal é o investigador de pós-doutorado, Emilio Donoso, que trabalhou com Yan no IPAC e, desde então, mudou-se para o Instituto de Ciências Astronómicas, da Terra e do Espaço na Argentina. A pesquisa também tem a co-autoria de Daniel Stern do JPL da NASA em Pasadena, e Roberto Assef da Universidade Diego Portales no Chile, anteriormente do JPL. Cada galáxia tem um buraco negro massivo no seu coração. O novo estudo foca-se naqueles que se "alimentam", chamados buracos negros supermassivos e activos, ou núcleos galácticos activos. Estes buracos negros devoram o material gasoso em redor, o que alimenta o seu crescimento.

Com a ajuda de computadores, os cientistas foram capazes de escolher mais de 170.000 buracos negros supermassivos e activos a partir dos dados do WISE. Mediram então o agrupamento das galáxias que contêm buracos negros escondidos e buracos negros expostos - a medida em que estes se agrupam em todo o céu. Se o modelo unificado fosse válido, e os buracos negros escondidos estivessem simplesmente escondidos pelos donuts na sua configuração vista de lado, então os investigadores esperariam que se agrupassem do mesmo modo que os expostos.

De acordo com a teoria, uma vez que as estruturas em forma de donut têm orientações aleatórias, os buracos negros também deveriam estar distribuídos aleatoriamente. É como jogar vários donuts ao ar - aproximadamente a mesma percentagem de donuts é vista de lado e é vista de cima ou de baixo, independentemente do seu agrupamento ou das suas distâncias. Mas o WISE encontrou algo totalmente inesperado. Os resultados mostram que as galáxias com buracos negros escondidos estão mais agrupadas do que as com buracos negros expostos. Se estes resultados forem confirmados, os cientistas terão que ajustar o modelo unificado e chegar a novas maneiras de explicar porque é que alguns buracos negros aparecem ocultos.

"O objectivo principal da unificação era criar um 'jardim zoológico' de tipos diferentes de núcleos activos sob um único 'guarda-chuva', afirma Donoso. Agora, isso tornou-se mais complexo de alcançar à medida que estudamos os dados do WISE. Outra forma de entender os resultados do WISE envolve a matéria escura. A matéria escura é uma substância invisível que domina a matéria no universo, superando a matéria normal que compõe as pessoas, planetas e estrelas. Cada galáxia fica no centro de um halo de matéria escura. Halos maiores têm mais gravidade e, por isso, puxam outras galáxias na sua direcção.

Dado que o WISE descobriu que os buracos negros escondidos estão mais agrupados do que os outros, os investigadores sabem que estes buracos negros escondidos residem em galáxias com halos maiores de matéria escura. Embora os halos propriamente ditos não sejam responsáveis por esconder os buracos negros, podem ser uma pista para o que está a acontecer. A teoria unificada foi proposta para explicar a complexidade que os astrónomos estavam a ver," afirma Stern. "Parece que esse modelo simples foi demasiado simples.

Como Einstein disse, os modelos devem ser feitos 'o mais simples possível, mas não mais simples. Os cientistas ainda estão vasculhando activamente os dados públicos do WISE, colocado em hibernação em 2011 após digitalizar a totalidade do céu duas vezes. Foi reactivado em 2013, com o novo nome NEOWISE, numa nova missão para identificar objectos potencialmente perigosos próximos da Terra.
Fonte: Astronomia OnLine

Filamentos cósmicos intergalácticos são revelados pela primeira vez

Caltechs-Cosmic-Web-Imager-Directly-Observes-Dim-Matter

No final dos anos 1980 e início dos anos 1990, os astrofísicos suspeitavam que o gás primordial, aquele que foi originado logo após o Big Bang, não estava distribuído de forma homogênea no universo, mas sim em canais que fluíam entre as galáxias, uma rede cósmica de filamentos finos e grossos que se cruzavam na vastidão do espaço. Christopher Martin, professor de física do Instituto de Tecnologia da Califórnia (Caltech, EUA), conta que desde os tempos em que era aluno de graduação ele estava pensando no meio intergaláctico, que contém a maior parte da matéria normal do universo, e que também é o meio em que as galáxias se formam e crescem.

Para recordar a contabilidade do universo, 96% do que o compõe são a matéria e energia escuras, e dos 4% restantes, apenas a quarta parte está na forma de estrelas e galáxias. Os outros 3% são o meio intergaláctico, ou IGM. Uma das características do IGM é que ele é difícil de ver. Antigamente, ele era observado indiretamente, pela absorção de luz que ocorre entre um objeto distante, como um quasar, e o observador, na Terra. Assim, o astrônomo percebia que havia algum gás intergaláctico na frente do quasar, provavelmente distribuído em filamentos a várias distâncias, mas não tinha como saber a distribuição destes filamentos.

Pensando no problema de visualização, Martin concebeu e desenvolveu o Cosmic Web Imager (CWI, ou “Visualizador da Teia Cósmica”). O CWI é um espectrógrafo capaz de fazer imagens usando vários comprimentos de ondas diferentes, simultaneamente. A partir destas imagens, um modelo 3D da estrutura dos filamentos pode ser feita, revelando sua estrutura. A primeira observação do CWI foi feita nas vizinhanças de dois objetos brilhantes, um quasar chamado QSO 1549+19 e uma bolha Lyman alfa em um aglomerado de galáxias conhecido como SSA22. Estes objetos foram escolhidos para a primeira observação do CWI porque são bastante brilhantes e iluminam o IGM próximo, reforçando o seu sinal.

Examinando aquela região, foi encontrado um filamento estreito, com um milhão de anos-luz de comprimento, fluindo do quasar, possivelmente alimentando o crescimento da galáxia que contém o quasar. Além deste, outros três filamentos foram observados circundando a bolha Lyman alfa, com uma rotação que mostra que estes filamentos estão fluindo para dentro da bolha e afetando sua dinâmica. Estes filamentos encontram-se a uma distância que corresponde a um período de rápida formação de galáxias, cerca de 2 bilhões de anos após o Big Bang.

Martin acredita que, no caso da bolha Lyman alfa, o que foi observado é uma protogaláxia, uma galáxia em formação com 300.000 anos-luz de diâmetro, três vezes o tamanho da nossa Via Láctea. O CWI permite aos astrônomos não só visualizar os filamentos e sua estrutura, mas também medir sua composição, massa e velocidade. A instalação atual foi feita no Observatório Palomar, e uma nova versão, mais sensível, está sendo preparada para instalação no Observatório W. M. Keck, no topo do Mauna Kea, no Havaí.

A intenção é observar filamentos com brilho médio, e não só os que estão sendo iluminados por quasares. Além disso, Martin tem planos para observar o IGM usando telescópios em um balão e em um satélite. Colocando seus instrumentos acima da atmosfera, ele será capaz de ver o IGM mais próximo, de épocas mais recentes na história do universo.
Fonte: Hypescience.com

MRO ajuda a descobrir nova cratera em Marte


A nova cratera marciana mede cerca de metade de um campo de futebol, capturada aqui nesta imagem obtida pela câmara de mais alta-resolução da MRO, a HiRISE. Crédito: NASA/JPL-Caltech/Universidade do Arizona

Cientistas descobriram no Planeta Vermelho a maior e mais nova cratera de impacto, já firmemente documentada com imagens "antes e depois". As imagens foram obtidas pela sonda MRO (Mars Reconnaissance Orbiter) da NASA. A cratera mede cerca de metade do tamanho de um campo de futebol e apareceu pela primeira vez em Março de 2012. O impacto que a criou foi provavelmente precedido por uma explosão no céu marciano que provocou um intenso atrito entre um asteróide e a atmosfera do planeta. Esta série de eventos pode ser comparada à explosão do meteoro que quebrou janelas em Chelyabinsk, Rússia, no ano passado. A explosão de ar e o impacto no chão escureceu uma área da superfície marciana com cerca de 8 km de diâmetro.

Desde que a sonda começou a sua observação sistemática de Marte em 2006, que o cientista Bruce Cantor estuda a cobertura global diária do MARCI (Mars Color Imager), procurando evidências de tempestades de poeira e outros eventos climáticos observáveis nas imagens. Cantor é o vice investigador principal desta câmara no MSSS (Malin Space Science Systems), a companhia que construiu e opera o instrumento MARCI e o CTX (Context Camera) da sonda. Através de uma análise cuidada das imagens, ele ajuda os operadores do rover a energia solar, Opportunity, a planear eventos climáticos que possam diminuir a sua energia. Ele também publica boletins meteorológicos semanais de Marte.

Há cerca de dois meses atrás, Cantor notou um discreto ponto escuro perto do equador numa das imagens. Não era o que estava procurando," afirma Cantor. "Estava fazendo o meu monitoramento climático habitual e algo chamou-me a atenção. Parecia normal, com raios que emanavam de um ponto central."

Começou a examinar as imagens anteriores, retrocedendo para trás no tempo um mês ou mais de cada vez. As imagens revelaram que a mancha escura estava presente há um ano atrás, mas não há cinco anos. Continuou a procurar, verificando imagens de cerca de 40 datas diferentes, e determinou a data em que o evento ocorreu; a mancha não estava lá até dia 27 de Março de 2012, e apareceu de seguida nas imagens diárias de 28 de Março de 2012.
Esta imagem de 6 de Abril de 2014, obtida pela HiRISE a bordo da MRO, mostra inúmeros deslizamentos de terra na vizinhança do local onde foi criada uma nova cratera de impacto, em Março de 2012. Crédito: NASA/JPL-Caltech/Universidade do Arizona

Assim que a mancha escura foi verificada como nova, foi observada o mês passado pelo CTX e pela câmara de mais alta-resolução da sonda, a HiRISE (High Resolution Imaging Science Experiment). Dos cerca de 400 novos impactos que produziram crateras em Marte, já documentados com imagens "antes e depois", esta é a única já descoberta usando uma imagem do MARCI, ao invés de uma imagem obtida com a câmara de alta-resolução. O CTX fotografou quase toda a superfície de Marte pelo menos uma vez durante os mais de sete anos de observações da sonda. Fotografou o local desta nova cratera em Janeiro de 2012, antes do impacto.

Aparecem duas crateras na imagem de Abril de 2014 pelo CTX, que não estavam presentes na anterior, confirmando que a mancha escura revelada pelo MARCI está relacionada com uma nova cratera de impacto. O HiRISE revela mais de uma dúzia de crateras mais pequenas perto das duas maiores vistas na imagem do CTX, possivelmente criadas por pedaços de asteróide ou impactos secundários de material ejectado pelas crateras principais durante o impacto. Também revela muitos deslizamentos de terra que escureceram as encostas da área envolvente com 8 km. Uma segunda imagem do instrumento HiRISE, obtida em Maio de 2014, acrescentou informações tridimensionais.

"A cratera maior é invulgar, bastante superficial em comparação com outras crateras novas que já observámos," afirma Alfred McEwen, investigador principal da câmara HiRISE da Universidade do Arizona, em Tucson. EUA. A maior cratera é ligeiramente alongada e cobre 48,5 por 43,5 metros.

McEwen estima que o objecto de impacto media cerca de 3 a 5 metros de diâmetro, o que é menos de um-terço do tamanho estimado do asteróide que atingiu a atmosfera da Terra perto de Chelyabinsk. Dado que a atmosfera de Marte é muito mais fina que a da Terra, as rochas espaciais de tamanho comparável são mais propensas a penetrar até à superfície de Marte e provocar crateras maiores.
Estas duas imagens, capturadas com um dia de diferença com a câmara MARCI da MRO, revelam um impacto de asteróide à direita. A imagem da esquerda foi obtida durante a tarde marciana de 27 de Março de 2012, a direita à tarde do dia 28 de Março de 2012. Crédito: NASA/JPL-Caltech/MSSS

Os estudos de crateras de impacto recentes em Marte fornecem informações valiosas acerca das taxas de impacto e acerca do material do subsolo exposto," afirma Leslie Tamppari, cientista do projecto MRO no JPL da NASA em Pasadena, no estado americano da Califórnia. "Esta combinação do HiRISE com o CTX ajudou-nos a descobrir e a examinar muitas crateras, e agora a cobertura diária do MARCI dá-nos uma grande precisão sobre a ocorrência de um impacto importante."

A NASA está a desenvolver conceitos para a sua iniciativa de redireccionar um asteróide próximo da Terra - possivelmente do mesmo tamanho da rocha que atingiu Marte dia 27 ou 28 de Março de 2012 - mas para muito mais perto do nosso planeta. O projecto envolveria uma nave movida a energia solar, que capturaria um asteróide pequeno ou um pedaço de um asteróide maior, redireccionando-o para uma órbita estável em torno da Lua.

Os astronautas viajariam até ao asteróide a bordo da nave Orion da NASA, lançada com o novo SLS da agência. Aí, recolheriam amostras para estudo na Terra. Esta experiência de voos tripulados perto de órbita terrestre ajudaria a NASA a testar novos sistemas e capacidades necessárias para enviar astronautas até Marte na década de 2030.
Fonte: Astronomia On-Line



Nunca tente esconder a sua nave atrás de uma nebulosa!

@ESO

Esta nova imagem do espaço revela uma nebulosa chamada Gum 41, que é formada por hidrogénio, o gás mais comum do universo. No meio desta nebulosa encontra-se uma grande quantidade de jovens, brilhantes e quentes estrelas. Ao libertar luz com elevada energia, as estrelas fazem com que o hidrogénio brilhe com esta cor escarlate. Muitas das imagens astronómicas mais famosas são de nebulosas muito coloridas, tal como esta. Nestas imagens as nuvens de gás parecem espessas e brilhantes mas na realidade são enganadoras!

Se um ser humano viajasse numa nave espacial até Gum 41, muito provavelmente nem daria conta do que estava no seu interior! Estas nuvens espalham-se de uma forma tão ténue que se tornam demasiado débeis para poderem ser vistas pelo olho humano. Estas nuvens são como um nevoeiro extremamente fino. Quando observado a alguns metros, o nevoeiro parece uma barreira espessa mas ao aproximarmo-nos parece dispersar-se e desaparecer - à medida que vamos penetrando parece que nunca conseguimos alcançá-lo! Isto ajuda-nos a explicar a razão desta grande e brilhante nuvem só ter sido descoberta em 1951!

Curiosidades: Nem sempre pode acreditar no que vê na TV; “Star Trek”, “Star Wars” e “BattleStar Galactica”, todas têm naves espaciais que se escondem atrás de espessas nebulosas gasosas. Mas agora já sabe - estas nuvens não são um bom refúgio para uma nave espacial que tente esconder-se!
Fonte: Ciência 2.0
Related Posts Plugin for WordPress, Blogger...