30 de jul de 2014

E o maior mistério do universo é…





dark-energy_00448676São 15 anos a coçar a cabeça, desde que percebemos que algum agente misterioso está empurrando o universo para longe. Nós ainda não sabemos o que é. Ele está em toda parte e não podemos vê-lo. Reponde por mais de dois terços do universo, mas não temos ideia de onde vem ou de que é feito. “A natureza não está pronta para nos dar alguma pista ainda”, diz Sean Carroll, físico teórico do Instituto de Tecnologia da Califórnia, em Pasadena (EUA). Um nome já lhe foi dado: energia escura. Agora, a busca é sobre o que realmente é. Ainda este ano, os astrônomos irão começar um novo levantamento do céu para procurar sinais do material entre as explosões de estrelas e antigos aglomerados de galáxias. Um pacote de missões espaciais e gigantescos telescópios baseados na Terra em breve se juntarão à missão.  Até o momento, nosso conhecimento é bastante escasso. Ele é limitado a, talvez, três coisas. Primeiro, sabemos que a energia escura empurra. Em 1998, observaram-se inesperadas explosões de supernovas, que estavam mais longe do que imaginávamos. O espaço parece, em algum momento, ter começado a se expandir mais rápido, como se impulsionado por uma força repulsiva agindo contra a gravidade atrativa da matéria.

Em segundo lugar, há vários ingredientes nela. O movimento e aglomeração de galáxias nos diz o quanto a matéria é exterior ao universo, enquanto que as micro-ondas cósmica emitidas 380 mil anos após o Big Bang nos permitem estudar a densidade total da matéria mais a energia. Este segundo número é muito maior. De acordo com os dados mais recentes, incluindo observações de micro-ondas do satélite Planck, da Agência Espacial Europeia, cerca de 68% do universo é, de alguma forma, não material, ou energética. Em terceiro lugar, a energia escura é um excelente combustível para as mentes criativas dos físicos. Eles a veem em centenas de formas diferentes e fantásticas. A mais “simples” delas é a constante cosmológica. É uma densidade de energia inerente ao espaço, que dentro da teoria geral da relatividade de Einstein cria uma gravidade repulsiva.

Conforme o espaço se expande mais e mais, torna a sua repulsa mais forte em relação à gravidade. Partículas físicas até parecem fornecer uma origem para ela, em partículas virtuais que aparecem e desaparecem no vácuo quântico incerto. Mas muitas discrepâncias catastróficas deixam espaço para uma mistura variada de teorias alternativas. A energia escura poderia ser quintessência, um campo de energia hipotética que permeia o espaço. Ou pode ser uma forma modificada da gravidade que repele a longa distância, ou uma ilusão nascida da posição da Terra no cosmos. Talvez a energia escura poderia assumir a forma de ondas de rádio trilhões de vezes maiores do que o universo observável.

“Muitas pessoas inteligentes têm tentado inventar algo melhor do que a constante cosmológica, ou entender por que a constante cosmológica tem este valor. Grosso modo, elas falharam”, diz Carroll. Uma maneira de ir direto ao ponto pode ser descobrir se a energia escura está mudando ao longo do tempo. Se não for verdade, isto excluiria a constante cosmológica: como uma propriedade inerente do espaço, a sua densidade deve permanecer inalterada. Na maioria dos modelos de quintessência, por outro lado, a energia torna-se diluída lentamente, como trechos de espaço – embora em alguns realmente se intensifique, bombeada pela expansão do universo. Em teorias mais modificadas da gravidade, a densidade da energia escura também é variável. Ela pode até subir um pouco e, em seguida, descer, ou vice-versa.

O destino do universo paira neste equilíbrio. Se a energia escura permanecer estável, a maioria dos cosmos irá acelerar para longe, deixando-nos em uma pequena ilha do universo cortado do resto do cosmos. Se intensificar-de, pode eventualmente destruir toda a matéria em um “Big Rip” (“grande rasgo”), ou até mesmo tornar o tecido do espaço instável aqui e agora. Nossa melhor estimativa hoje, baseada principalmente em observações de supernovas, é que a densidade da energia escura é bastante estável. Há uma sugestão de que está aumentando ligeiramente, mas as incertezas são muito grandes para nos preocuparmos com esse aumento.

Diminuindo as incertezas


A Pesquisa de Energia Escura, um projeto internacional que começou a coletar dados em setembro, pretende melhorar nosso conhecimento. Ele utiliza o telescópio Víctor M. Blanco de 4 metros de largura do Observatório Interamericano Cerro, no Chile, ligado a uma câmera infravermelha sensível especialmente projetada para procurar vários sinais reveladores da energia escura sobre uma ampla faixa do céu. “Este não é o maior telescópio do mundo, mas tem um grande campo de visão”, diz Joshua Frieman da Universidade de Chicago (EUA), que é diretor do projeto. Para começar, o telescópio vai pegar muitos mais supernovas. O brilho aparente de cada explosão estelar nos diz há quanto tempo isso aconteceu. Durante o tempo que a luz nos atingiu, o seu comprimento de onda foi esticado pela expansão do espaço.

A pesquisa também vai desenhar um mapa do céu que marca as posições de algumas centenas de milhões de galáxias e suas distâncias de nós. As ondas sonoras que reverberam em torno dos cosmos deram enormes superaglomerados de galáxias uma escala característica. Ao medir o tamanho aparente de superaglomerados, podemos obter uma nova perspectiva sobre a história da expansão do universo. O mapa também revela influências das trevas em escalas menores. A equipe de pesquisa acompanhará o crescimento através de um efeito conhecido como lente gravitacional, que ocorre quando o feixe dobrar a luz que passa através deles a partir de objetos cósmicos ainda mais distantes. Estas várias medidas devem dar um insight sobre como a energia escura mudou ao longo do tempo. A pesquisa deve reduzir a incerteza sobre os resultados existentes por um fator de quatro, diz Frieman.

Após a primeira análise devida dos dados, em 2016, vamos começar a distinguir entre alguns dos diferentes modelos teóricos. Por fim, o Large Synoptic Survey Telescope, um projeto norte-americano, deve-se abrir o seu grande olho em 2021. Outros mega-âmbitos, como o Telescópio de 30 Metros, no Havaí, o European Extremely Large Telescope e o Telescópio Gigante Magalhães, no Chile, também devem entrar em ação em torno do mesmo tempo. Assim, o enorme receptor de rádio cósmico baseado na Austrália e África do Sul, o Square Kilometre Array, irá traçar a estrutura cósmica através do brilho de rádio de nuvens de hidrogênio. Em 2020, a Agência Espacial Europeia e a NASA planejam lançar uma missão espacial de caça a energia escura chamada Euclides. O telescópio Infrared Survey Largo-Campo dos EUA pode seguir logo depois.

Esta perseguição através do espaço vai ser emocionante, mas ainda pode nos iludir. Mesmo se descobrirmos que a densidade da energia escura é crescente ou decrescente, podemos não ser capazes de dizer se isso é devido a quintessência ou a algum tipo de variável gravidade. Se você introduzir um novo campo ou partícula para ser sua energia escura, então também vai atuar como o portador de uma nova força”, diz Clare Burrage da Universidade de Nottingham, no Reino Unido. Algo como quintessência produziria uma força fundamental em quinto lugar, separada da gravidade, eletromagnetismo e forças nucleares. O mesmo é válido para a maioria das formas de gravidade modificada. “Mas nós não vemos uma quinta força dentro do sistema solar”, diz Burrage.

Teóricos geralmente se livram deste ponto de atrito pela adição de um mecanismo de triagem, que enfraquece a quinta força em ambientes relativamente densos, como a vizinhança solar. Um projeto chamado experimento GammeV, do Fermilab, em Illinois (EUA), está já à procura de um determinado campo de energia escura blindado chamado de camaleão. Até agora GammeV nada observou, mas Burrage visa procurar uma gama muito maior de energias escuras, e com maior sensibilidade. 

Existem ainda muitas maneiras de se tentar a energia escura, como através de efeitos elétricos. Por exemplo, Michael Romalis, da Universidade de Princeton (EUA) e Robert Caldwell do Dartmouth College (EUA) propuseram no início deste ano que se fótons ou elétrons comuns podem gerar quintessência mesmo muito fraca, então um campo magnético da Terra deve gerar uma pequena carga eletrostática. Este efeito é potencialmente simples de detectar, embora qualquer aparelho projetado para fazê-lo teria que ser muito preciso. Poucos imaginam que esse mistério será solucionado logo. “A energia escura é um dos maiores mistérios, e eu não espero ainda estar por perto quando nós o descobrirmos”, diz Stephen Hsu, da Universidade de Oregon (EUA).
Fonte: HypeScience.com

M31 – A Galáxia de Andrômeda

m31_bers_960

Andrômeda é a maior galáxia mais próxima da Via Láctea. Acredita-se que a nossa galáxia se pareça muito com Andrômeda. Juntas essas duas galáxias dominam o Grupo Local de Galáxias. A luz difusa de Andrômeda é causada pelas centenas de bilhões de estrelas que a constitui. As poucas estrelas distintas que circundam a imagem de Andrômeda são na verdade, estrelas da nossa própria galáxia, e que estão bem na frente do objeto de segundo plano. Andrômeda é frequentemente chamada de M31, já que é o trigésimo primeiro objeto listado no catálogo de Messier de objetos difusos no céu. A M31 está a uma distância, que a sua luz leva cerca de dois milhões de anos para nos atingir. Embora seja visível a olho nu, como uma pequena mancha no céu, a imagem acima da M31 foi feita com uma câmera padrão acoplada a um telescópio pequeno. Muito sobre a M31 permanece ainda desconhecido e sendo tema de estudos, incluindo como ela adquiriu seu centro que tem feições que lembram dois picos e que é algo incomum entre as galáxias.

Uma fatia de estrelas

A slice of stars

O fino raio brilhante, que cruza a imagem, corta uma figura solitária, com poucas estrelas em primeiro plano e galáxias num distante segundo plano para fazer companhia. Contudo, tudo isso é uma questão de perspectiva, já que localizada logo fora do frame está outra espiral próxima. Juntas, as duas galáxias formam um par, que se move através do espaço, unidas e uma fazendo companhia para a outra. O tema dessa imagem do Hubble é chamada de NGC 3501, com a NGC 3507 sendo sua companheira fora do frame. As duas galáxias parecem bem diferentes – outro exemplo da importância da perspectiva.

A NGC 3501 aparece de lado, dando a ela uma forma alongada e bem estreita. Sua parceira, contudo, aparece bem diferente, de frente nos dando a fantástica visão dos braços barrados em forma de redemoinho.

Enquanto os mesmos braços não possam ser visíveis nessa imagem da NGC 3501, é também uma galáxia espiral – embora um pouco diferente de sua companheira. Enquanto que a NGC 3507 tem barras cortando o seu centro, a NGC 3501 não possui essas feições. Ao invés disso, ela possui braços espirais soltos, todos originando do seu centro. As estrelas e o gás brilhante, podem ser vistos nessa imagem de forma intensa, cortados por escuras linhas de poeira que cruzam a galáxia. Uma versão dessa imagem entrou na competição de processamento de imagens Hubble’s Hidden Treasures pelo competidor Nick Rose.

Épsilon de Auriga: o misterioso piscar de uma estrela gigante

Estrela Epsilon de Auriga
Épsilon de Auriga: a estrela tem 6 bilhões de quilômetros de raio e é a mais forte candidata ao posto de maior estrela conhecida. Crédito: Alson Wong and Citizen Sky/Nasa


Desde o século 19, um misterioso fenômeno acontece na constelação de Auriga, sem que os cientistas saibam exatamente por que. Ali, a cada 27 anos, a gigantesca estrela Épsilon perde metade de seu brilho e permanece assim por dois anos, até que lentamente se fortalece novamente. Afinal, o que acontece em Épsilon de Auriga? Situada a cerca de 2 mil anos-luz da Terra e medindo quase 6 bilhões de quilômetros de raio, Épsilon de Auriga é a mais forte candidata ao posto de maior estrela conhecida.

É tão grande que se fosse colocada no centro do Sistema Solar chegaria até a órbita de Urano, o penúltimo planeta a partir do Sol. O último "apagão" de Épsilon de Auriga começou em agosto de 2009 e em dezembro do mesmo ano atingiu seu ponto de menor brilho, provavelmente eclipsada por um escuro objeto. A natureza desse objeto - provavelmente uma estrela - ainda é motivo de acalorados debates por parte dos pesquisadores, uma vez que suas características ainda não foram observadas diretamente.  Em 2011 a estrela voltou a brilhar até retornar ao seu brilho máximo, condição que se mantêm até agora.

Um modelo apresentado em 2008 e que ganhou bastante popularidade mostra que esse objeto companheiro seria um sistema estelar binário, rodeado por um disco de poeira maciço e opaco de poeira, mas recentes observações feitas pelo telescópio espacial Spitzer mostram que Épsilon de Auriga é eclipsada por uma única estrela envolta em um disco de poeira de 600 milhões de quilômetros de raio e 75 milhões de quilômetros de espessura. As teorias que afirmavam que o objeto seria uma estrela grande e semitransparente ou até mesmo um buraco negro já foram descartadas.
Fonte: Apolo 11.com - http://www.apolo11.com/

Related Posts Plugin for WordPress, Blogger...