11 de jun de 2015

Uma borboleta celeste emerge do seu casulo de poeira

Instrumento SPHERE revela um dos estágios mais precoces da formação de nebulosas planetárias
Imagem VLT/SPHERE da estrela L2 Puppis e seus arredores.Crédito:ESO/P. Kervella

Algumas das imagens mais nítidas obtidas com o Very Large Telescope do ESO revelaram pela primeira vez o que parece ser uma estrela velha a dar origem a uma nebulosa planetária em forma da borboleta. Estas observações da estrela gigante vermelha L2 Puppis, obtidas no modo ZIMPOL do recentemente instalado instrumento SPHERE, mostram também de forma clara uma companheira estelar próxima. As fases finais das estrelas continuam a suscitar muitas questões aos astrônomos, incluindo a origem de uma nebulosa bipolar como esta, com a sua estranha e complexa forma de ampulheta. A cerca de 200 anos-luz de distância, L2 Puppis é uma das gigantes vermelhas mais próximas da Terra que se sabe ter atingido já as fases finais da sua vida.

As novas observações obtidas com o modo ZIMPOL do SPHERE foram feitas no visível usando métodos de ótica adaptativa extremos, com os quais se corrigem as imagens com um grau muito mais elevado do que com a ótica adaptativa normal, permitindo assim que objetos tênues próximos de fontes de luz intensa possam ser observados com imenso detalhe. Tratam-se dos primeiros resultados publicados com este modo e os mais detalhados obtidos para uma estrela deste tipo. O ZIMPOL consegue produzir imagens três vezes mais nítidas do que as obtidas com o Telescópio Espacial Hubble da NASA/ESA, sendo que as novas observações mostram a poeira que rodeia a L2 Puppis de forma extremamente detalhada.

Estes dados confirmam resultados anteriores, obtidos com o instrumento NACO, da poeira a formar um disco, o qual a partir da Terra nos aparece praticamente de perfil, mas dão-nos uma visão muito mais detalhada. A informação de polarização obtida com o ZIMPOL permitiu à equipa construir um modelo tridimensional das estruturas de poeira. Os astrônomos descobriram que o disco de poeira começa a cerca de 900 milhões de quilômetros da estrela — um pouco mais do que a distância do Sol a Júpiter — e que  depois se espalha para o exterior, criando uma forma simétrica semelhante a um funil que rodeia a estrela.

A equipe observou também uma segunda fonte luminosa a cerca de 300 milhões de quilômetros — o dobro da distância da Terra ao Sol — de L2 Puppis. Esta companheira estelar muito próxima é muito provavelmente outra estrela gigante vermelha de massa similar, mas mais jovem. A combinação de enormes quantidades de poeira a rodear uma estrela que está a morrer lentamente, juntamente com a presença de uma estrela companheira, é exatamente o tipo de sistema do qual se espera que surja uma nebulosa planetária bipolar. Estes três elementos parecem ser necessários, no entanto é também preciso uma boa dose de sorte para chegarmos ao subsequente emergir de uma borboleta celeste deste casulo poeirento.

O autor principal do artigo científico que descreve estes resultados, Pierre Kervella, explica: A origem das nebulosas planetárias bipolares é um dos grandes problemas clássicos da astrofísica moderna, especialmente a questão de saber exatamente como é que as estrelas liberam para o espaço a sua quantidade valiosa de metais — um processo importante, uma vez que este material será usado para produzir futuras gerações de sistemas planetários”.  Além do disco de L2 Puppis, a equipe encontrou também dois cones de material perpendiculares ao disco. Mais importante ainda, no interior destes cones, foram descobertas duas plumas de material, compridas e ligeiramente curvas.

A partir dos pontos de origem destas plumas, a equipe pôde deduzir que uma é possivelmente o resultado da interação entre o material de L2 Puppis e o vento e pressão de radiação da sua estrela companheira, enquanto a outra parece ter tido origem na colisão entre os ventos estelares das duas estrelas ou ser o resultado de um disco de acreção que se encontrará em torno da estrela companheira. Embora muito ainda esteja por compreender, existem duas teorias principais sobre nebulosas planetárias bipolares, ambas apoiadas na existência de um sistema binário de estrelas. As novas observações sugerem que ambos estes processos estão a atuar em torno de L2 Puppis, parecendo muito provável que este par de estrelas dê origem a uma borboleta.

Pierre Kervella conclui:Com a estrela companheira a completar uma órbita em torno de L2 Puppis em apenas alguns anos, esperamos ver como é que esta companheira irá dar forma ao disco da gigante vermelha. Podemos seguir a evolução da poeira em torno da estrela em tempo real — uma possibilidade extremamente interessante e rara”.
Fonte: ESO

Nebulosa mostra fenômeno do "fluxo de champanhe"


Nebulosa mostra fenômeno do

Esta nuvem de gás chamada RCW 34 é um local de formação estelar situado na constelação austral da Vela. [Imagem: ESO]

Fluxo de champanhe

Na região mais brilhante desta nebulosa resplandecente chamada RCW 34, o gás é aquecido de forma dramática pelas estrelas jovens, expandindo-se em direção ao gás mais frio à sua volta. Assim que o hidrogênio quente atinge o limite exterior da nuvem de gás, ele é liberado para o vácuo exterior, tal como o conteúdo de uma garrafa de champanhe quando se retira a rolha - um processo não coincidentemente chamado de fluxo de champanhe. No entanto, a região de formação estelar RCW 34 oferece mais do que umas tantas "bolhas de champanhe", já que, no coração desta nuvem, parecem ter ocorrido múltiplos episódios de formação estelar.

Esta nova imagem obtida pelo telescópio VLT, no Chile, mostra uma espetacular nuvem vermelha de hidrogênio brilhante, por detrás de uma coleção de estrelas azuis situadas em primeiro plano. Essas estrelas produzem um efeito dramático na nebulosa. O gás que é exposto à forte radiação ultravioleta - como acontece no coração desta nebulosa - ioniza-se, o que quer dizer que os elétrons escapam dos átomos de hidrogênio, que brilha intensamente com uma cor vermelha característica.

Hidrogênio cósmico

O hidrogênio é a matéria-prima de fenômenos como o fluxo de champanhe, além de ser um indicador de regiões de formação estelar. As estrelas nascem a partir do colapso de nuvens de gás e portanto são abundantes em regiões com enormes quantidades de gás, tais como a RCW 34, o que torna esta nebulosa particularmente interessante para o estudo da formação e evolução das estrelas.Observando para além da cor vermelha, constata-se a existência de muitas estrelas jovens, com massas de apenas uma fração da massa do Sol.

Estas estrelas parecem juntar-se em torno de estrelas mais velhas e massivas situadas no centro, enquanto apenas algumas se distribuem na periferia. Esta distribuição levou os astrônomos a consideraram que devem ter ocorrido diferentes episódios de formação estelar no coração desta nuvem. Três estrelas gigantescas formaram-se num primeiro evento, tendo então dado origem à formação de estrelas menos massivas na sua vizinhança.
Fonte: Inovação Tecnológica


A visão mais detalhada até hoje do Universo distante


Imagem composta do anel de Einstein de SDP.81 e da galáxia reconstruída.Crédito:ALMA (NRAO/ESO/NAOJ)/Y. Tamura (The University of Tokyo)/Mark Swinbank (Durham University)

A Campanha de Linha de Base Longa do ALMA produziu uma imagem muito detalhada de uma galáxia distante afetada por lente gravitacional. A imagem mostra uma vista ampliada das regiões de formação estelar na galáxia, com um nível de detalhe nunca antes alcançado numa galáxia tão remota. As novas observações são muito mais detalhadas do que as obtidas pelo Telescópio Espacial Hubble da NASA/ESA e revelam regiões de formação estelar na galáxia equivalentes a versões gigantes da Nebulosa de Orion. A Campanha de Linha de Base Longa do ALMA produziu algumas observações extraordinárias e coletou informação com um detalhe sem precedentes dos habitantes do Universo próximo e longínquo.

 Foram feitas observações no final de 2014 no âmbito de uma campanha que pretendeu estudar uma galáxia distante chamada HATLAS J090311.6+003906, também conhecida pelo nome mais simples de SDP.81. A radiação emitida por esta galáxia é “vítima” de um efeito cósmico chamado lente gravitacional. Uma galáxia enorme que se situa entre SDP.81 e o ALMA atua como lente gravitacional, distorcendo a radiação emitida pela galáxia mais distante e criando um exemplo quase perfeito do fenômeno conhecido por Anel de Einstein. Pelo menos sete grupos de cientistas analisaram de forma independente os dados do ALMA sobre SDP.81.

Esta profusão de artigos científicos deu-nos informação sem precedentes sobre esta galáxia, revelando detalhes sobre a sua estrutura, conteúdo, movimento e outras características físicas. O ALMA funciona como um interferômetro, isto é, a rede múltipla de antenas trabalha em sintonia perfeita coletando radiação como se de um único e enorme telescópio virtual se tratasse. Como resultado, estas novas imagens de SDP.81 possuem uma resolução até 6 vezes melhor que as imagens obtidas no infravermelho com o Telescópio Espacial Hubble da NASA/ESA.

Os sofisticados modelos dos astrônomos revelam estruturas pormenorizadas, nunca antes vistas no corpo da galáxia SDP.81, sob a forma de nuvens de poeira que acredita-se serem repositórios de gás molecular frio — os locais de nascimento de estrelas e planetas. Estes modelos foram corrigidos da distorção produzida pelo efeito de lente gravitacional. Como resultado, as observações ALMA são tão nítidas que os investigadores podem ver acúmulos de formação estelar na galáxia, com um tamanho de até 100 anos-luz, o que equivale a observar versões gigantes da Nebulosa de Orion a produzir milhares de vezes mais estrelas jovens no lado distante do Universo. Esta é a primeira vez que tal fenômeno é observado a distâncias tão grandes.

A imagem reconstruída da galáxia obtida com o ALMA é espetacular”, diz Rob Ivison, co-autor de dois artigos científicos que descrevem os resultados e Diretor de Ciência do ESO.
A enorme área coletora do ALMA, a grande separação entre as suas antenas e a atmosfera muito estável que existe por cima do deserto do Atacama, levaram a que conseguíssemos obter um detalhe sem precedentes tanto nas imagens como nos espectros, o que significa que temos observações muito sensíveis, assim como informação sobre como é que as diferentes partes da galáxias se movimentam. Podemos estudar galáxias no outro extremo do Universo à medida que se fundem e formam enormes quantidades de estrelas. Isto é o tipo de coisa que me faz levantar cedo da cama!”.

Utilizando a informação
espectral coletada pelo ALMA, os astrônomos mediram também como é que a galáxia distante gira e estimaram a sua massa. Os dados mostraram que o gás contido nesta galáxia é instável; acumulações de gás estão colapsando sobre si mesmo, indo muito provavelmente no futuro dar origem a regiões gigantes de formação estelar. Curiosamente, a modelização do efeito de lente gravitacional indica também a existência de um buraco negro supermassivo no centro da galáxia que atua como lente. A região central da SDP.81 é muito tênue para poder ser detectada, levando à conclusão de que a galáxia em primeiro plano possui um buraco negro supermassivo com mais de 200-300 milhões de vezes a massa do Sol.

O número de artigos científicos publicados usando um único conjunto de dados do ALMA demonstra bem a excitação gerada pelo potencial da alta resolução e poder coletor da rede. Mostra também como é que o ALMA permitirá aos astrônomos fazer mais descobertas nos anos vindouros, levantando ainda mais questões sobre a natureza das galáxias distante.
Fonte: ESO

Estrelas exiladas explodem longe de casa

Impressão de artista de uma supernova do Tipo Ia a explodir na região entre galáxias num grande enxame galáctico, uma das quais é visível à esquerda. Crédito: Dr. Alex H. Parker, NASA e SDSS


Imagens nítidas obtidas pelo Telescópio Espacial Hubble confirmam que três supernovas descobertas há vários anos atrás explodiram no vazio escuro do espaço intergaláctico, tendo sido arremessadas das suas galáxias-mãe milhões ou milhares de milhões de anos antes. A maioria das supernovas são descobertas dentro de galáxias que contêm centenas de milhares de milhões de estrelas, uma das quais pode explodir por século e por galáxia.

No entanto, estas supernovas solitárias foram encontradas entre galáxias em três grandes enxames com vários milhares de galáxias cada. As vizinhas mais próximas das estrelas estavam provavelmente a 300 anos-luz de distância, quase 100 vezes mais distantes que o nosso vizinho estelar mais próximo, Proxima Centauri, a 4,24 anos-luz de distância. Estas supernovas raras e solitárias fornecem uma pista importante para o que existe nos vastos espaços vazios entre as galáxias e podem ajudar os astrónomos a compreender como é que os enxames de galáxias se formaram e evoluíram ao longo da história do Universo.

As estrelas solitárias lembraram à líder do estudo, Melissa Graham da Universidade da Califórnia em Berkeley, pós-doutorada e fã ávida de ficção científica, a estrela fictícia Thrial que, no romance "Against a Dark Background" do autor Iain Banks, está a um milhão de anos-luz de qualquer outra estrela. Um dos seus planetas habitados, Golter, tem um céu noturno quase sem estrelas. Quaisquer planetas nestas estrelas intraenxame - estrelas velhas e compactas que explodiram em supernovas do Tipo Ia - foram, sem dúvida, destruídos pelas explosões. Mas, tal como Golter, teriam tido um céu noturno quase sem estrelas brilhantes. A densidade de estrelas intraenxame é cerca de um milionésimo do que vemos da Terra.

"Teria sido de facto um fundo bastante escuro," comenta, "povoado apenas pelas ocasionais manchas ténues e difusas dos membros galácticos mais próximos e brilhantes." Graham e colegas - David Sand da Universidade do Texas em Lubbock, EUA, Dennis Zaritsky da Universidade do Arizona em Tucson e Chris Pritchet da Universidade de Victoria na Columbia Britânica - relataram a sua análise das três estrelas num artigo apresentado no passado dia 5 de junho durante uma conferência sobre supernovas na Universidade Estatal da Carolina do Norte em Raleigh, EUA. O artigo também foi aceite para publicação na revista The Astrophysical Journal.

Enxames de milhares de galáxias

O novo estudo confirma a descoberta, entre 2008 e 2010, de três supernovas aparentemente não pertencentes a nenhuma galáxia pelo estudo MENeaCS (Multi-Epoch Nearby Cluster Survey) do Telescópio do Canadá-França-Hawaii (sigla CFHT, em inglês) em Mauna Kea, Hawaii. O CFHT foi capaz de descartar galáxias fracas como hospedeiras destas supernovas. Mas a câmara ACS (Advanced Camera for Surveys) do Hubble é 10 vezes melhor em termos de sensibilidade e resolução. As imagens mostram claramente que as supernovas explodiram no espaço vazio, longe de qualquer galáxia. Portanto, pertencem a uma população de estrelas solitárias que existem na maioria, se não em todos, os enxames de galáxias.

Apesar das estrelas e das supernovas residirem normalmente em galáxias, um estudo recente determinou que as galáxias situadas em enxames gigantescos sofrem forças gravitacionais que afastam cerca de 15% das estrelas. Os enxames têm tanta massa, porém, que as estrelas deslocadas permanecem gravitacionalmente ligadas dentro das regiões escassamente povoadas entre as galáxias. Uma vez dispersas, estas estrelas solitárias são demasiado fracas para serem observadas individualmente, a não ser que expludam como supernovas. Graham e colegas estão à procura de supernovas brilhantes no espaço entre as galáxias para determinar a população de estrelas invisíveis. Esta informação fornece pistas sobre a formação e evolução de estruturas a grande escala no Universo.

"Nós fornecemos a melhor evidência, até agora, de que as estrelas intraenxame realmente explodem como supernovas do Tipo Ia," acrescenta Graham, "e confirmámos que as supernovas sem galáxia podem ser usadas para rastrear a população de estrelas intraenxame, o que é importante para alargar esta técnica até enxames mais distantes."

Graham e colegas também descobriram que uma quarta explosão estelar, observada pelo CFHT, parece estar dentro de uma região vermelha e redonda que poderá ser uma galáxia pequena ou um enxame globular. Se a supernova fizer realmente parte de um enxame globular, é a primeira vez que uma supernova foi confirmada a explodir dentro destes aglomerados densos com menos de um milhão de estrelas. Todas as quatro supernovas estão em enxames galácticos a menos de mil milhões de anos-luz da Terra. Tendo em conta que existem muito menos estrelas em enxames globulares [do que em galáxias], apenas uma pequena fração das supernovas pode ocorrer em enxames globulares," comenta Graham.

"Este pode ser o primeiro caso confirmado e poderá indicar que a fração de estrelas que explodem como supernovas é maior tanto em galáxias de pequena massa como em enxames globulares. Graham realça que a maioria dos modelos teóricos para as supernovas do Tipo Ia envolvem um sistema binário, por isso é provável que as estrelas em explosão fizessem parte de um sistema duplo.

"No entanto, não é nenhuma história de amor," explica. "A companheira ou era uma anã branca com menos massa, que eventualmente chegou muito perto e tragicamente fragmentou-se num anel posteriormente canibalizado pela estrela principal, ou era uma estrela normal a partir da qual a anã branca primária roubou gás das suas camadas exteriores. De qualquer maneira, esta transferência de material fez com que a componente principal se tornasse instável em massa e explodisse como uma supernova do Tipo Ia."
Fonte: Astronomia Online



Related Posts Plugin for WordPress, Blogger...