15 de jul de 2015

Ciclo estear - A Vida das Estrelas (do começo ao fim)

Estrelas são basicamente bolas gigantes de plasma, inertes no espaço, e são constituídas em sua maioria de 71% de hidrogênio, 27% de hélio e com frações de outros elementos mais pesados.

  As estrelas se formam em Nuvens Moleculares, a partir de instabilidades que frequentemente são geradas por choques provenientes de Supernovas. Após isso, ela começa a colapsar sob sua própria força gravitacional. Como a nuvem continua a contrair, ela começa a aumentar sua temperatura, causada pela energia gravitacional gerando energia cinética. Quanto mais ela contrai, mais a sua temperatura aumenta. Estrelas pré-sequência principal (protoestrelas) são cercadas por um disco de acreção, que futuramente, são responsáveis pela formação de seu sistema (como o Sistema Solar). Após bilhões de anos, elas perdem muita massa, e entram em colapso... a partir daí, o ciclo se repete.

ciclo estelar
 
 
A Evolução da estrela de acordo com sua massa
(1 M Sol é igual a 1 massa solar)


M < 0,08 M Sol
 
         O limite de 0,08 M Sol estabelece o destino de uma Nuvem Molecular em contratação. Se a massa inicial da esfera gasosa resultante da contração de uma Nuvem Molecular for inferior a 0,08 M Sol ela jamais atingirá o estado de "estrela". O objeto formado, como já vimos, é uma "Anã Marrom". Assim, o valor de 0,08 M Sol é o limite que determina quem será estrela e quem será Anã Marrom. Veja a figura ao lado e entenda os estágios que ocorrem até que se forme uma Anã Marrom.
Entre 0,08 e 0,5 M Sol
          Ficamos então com o intervalo de massa inicial situado entre 0,08 M Sol e 0,5 M Sol. Neste caso ocorre a queima de hidrogênio no centro da estrela com a consequente formação de um núcleo de hélio. Esta região central de hélio se torna degenerada e não consegue atingir a temperatura suficiente para dar início às reações nucleares com o hélio. Como consequência, ela não se transforma em uma estrela gigante. Seu estágio final de evolução é a formação de uma estrela Anã Branca, com núcleo de hélio. Veja a figura ao lado e entenda os estágios que ocorrem até que se forme uma Anã Branca.

Entre 0,5 e 1,0 M Sol

         Aqui, a contração muito lenta do núcleo continua e a temperatura central da estrela aumenta um pouco. Sua superfície continua a expandir e, neste caso, a estrela irá se transformar em uma estrela gigante vermelha. Devido à sua pequena massa, a luminosidade da estrela é gerada pelo processo de convecção. Após ejetar a maior parte do seu envoltório, as estrelas neste intervalo de massa se tornam Anãs Brancas com núcleo de hélio (mas sem passar pelo estágio de Nebulosa Planetária). Veja a figura ao lado e entenda os estágios que ocorrem com as estrelas com este intervalo de massa.

Entre 1 e 2 M Sol

          Nestas estrelas, o núcleo contrai e aquece bastante. Como o núcleo é formado por gás degenerado, ele não consegue expandir muito, embora haja um enorme aumento da temperatura central. Devido ao seu processo de expansão contínua, a estrela não consegue manter o seu envoltório e ejeta a sua maior parte no espaço, formando a tão famosa "Nebulosa Planetária". O que resta desta estrela é uma Anã Branca. Veja a figura ao lado e entenda os estágios que ocorrem com as estrelas com este intervalo de massa.



Entre 2 e 10 M Sol

          Muitas coisas podem acontecer com estrelas neste intervalo. Não só o núcleo, como toda a estrela está colapsando e seu envoltório está caindo na direção de seu pequeno núcleo endurecido. O material do envoltório da estrela irá "ricochetear" na superfície endurecida do núcleo estelar (bounce). eventualmente, a região central da estrela pode sobreviver a este fenômeno violento. A esta estrela residual, extremamente densa e pequena que sobrevive a esse fenômeno, damos o nome de "Estrela de Nêutrons". Veja a figura ao lado e entenda os estágios que ocorrem para se formar uma Estrela de Nêutrons.


Entre 10 e 20 M Sol

         Já vimos que estrelas cuja massa inicial é maior do que 10 massas solares ao alcançarem os estágios finais de sua evolução passam por processos bastante violentos. A região central dessas estrelas gigantes sofrem um fortíssimo colapso gravitacional que irá levá-las a sofrerem uma enorme explosão. Quando isso acontece, essas estrelas gigantes lançam toda sua matéria no espaço interestelar e podem ser completamente destruidas, ou deixar uma estrela residual e compacta, chamada de Estrela de Nêutrons. Se a estrela inicial é muito grande, pode ocorrer que após sua explosão, o objeto residual deixado para trás ainda tenha muita massa. Neste caso, pode acontecer que o colapso gravitacional continue a agir nesse objeto residual de modo tão intenso que a pressão da matéria alí existente não consiga suportar esse esmagamento. Nesse caso, a estrela residual continua a colapsar, tão intensamente, que forma o famoso "Buraco Negro". Veja a figura ao lado e entenda os estágios que ocorrem até que se forme um Buraco Negro.

Supernova tipo I
supernova tipo IEm geral, é resultado de um processo de acréscimo de matéria sobre uma estrela Anã Branca participante de um sistema binário de estrelas. Se, em um sistema binário, uma estrela de grande massa passa uma quantidade muito grande de hidrogênio para a superfície de uma estrela Anã Branca, sua companheira de sistema, pode ocorrer que a Anã Branca ultrapasse um limite de massa a partir do qual ela não é mais estável. Este limite máximo para a massa de uma estrela é o limite de Chandrasekhar. Quando ele é ultrapassado, a estrela não é mais estável, iniciando um processo de colapso gravitacional, com incríveis consequências. As Supernovas tipo Ia apresentam hidrogênio no espectro. A energia liberada pelas reações nucleares torna-se maior do que a energia de ligação gravitacional do núcleo degenerado, e a estrela é totalmente dispersa no espaço.


Tempo de vida das estrelas

O tempo de vida de cada estrela está diretamente ligado com a sua massa. Vejamos alguns exemplos:
tempo de vida das estrelas
tipos de estrelas
Fonte: Galeria do Meteorito

Um enigma na Via Láctea

Equipe internacional identifica na galáxia estrelas jovens com composição química de velhas
Astros incomuns: representação artística de estrelas gigantes vermelhas de composição química atípica, recém-identificadas
Astros incomuns: representação artística de estrelas gigantes vermelhas de composição química atípica, recém-identificadas

A descoberta de estrelas relativamente jovens com composição química típica de estrelas antigas prova que um método usado para estimar a idade de estrelas longínquas da galáxia, o chamado “relógio químico” da Via Láctea, nem sempre funciona. Essas estrelas foram identificadas recentemente por uma equipe internacional de astrônomos coordenada pela brasileira Cristina Chiappini e descritas em um artigo na edição de abril da revista Astronomy & Astrophysics. A origem dessas estrelas jovens com cara de velhas, porém, permanece um mistério. Pesquisadora do Instituto Leibniz para Astrofísica, em Potsdam, Alemanha, Chiappini notou a existência desses objetos celestes incomuns quando seu aluno de doutorado Friedrich Anders lhe apresentou uma análise de 622 estrelas de várias partes do disco da Via Láctea. Chiappini desenvolve modelos de evolução química estelar para deduzir quando e onde nasceram as estrelas da galáxia.

Uma das previsões desses modelos é que, quanto mais átomos de ferro uma estrela possui em relação a elementos químicos chamados de alfa, mais jovem é a estrela. Para verificar essa previsão, Anders comparou a composição química das estrelas, obtida por astrônomos do levantamento Apogee, com a idade das mesmas estrelas, calculada por pesquisadores do telescópio espacial CoRoT. O Apogee investiga a evolução da galáxia usando instrumentos sensíveis à luz infra vermelha montados no telescópio de 2,5 metros do observatório Sloan, no Novo México, Estados Unidos. Já o CoRoT é um satélite desenvolvido por uma colaboração franco-europeia-brasileira que permite investigar a estrutura interna das estrelas e determinar a idade delas.
Anders confirmou que as idades da maioria das 622 estrelas determinadas pelo CoRoT concordavam com a faixa etária sugerida pela composição química delas. Cerca de 20 dessas estrelas, no entanto, chamavam a atenção por terem proporcionalmente mais elementos químicos alfa do que ferro, em relação ao que se esperaria de suas idades. “Achamos que algo estranho estava acontecendo”, lembra Chiappini.

Intrigados, Chiappini e Anders pediram a um de seus colaboradores no projeto CoRoT, o astrônomo Benoit Mosser, do Observatório de Paris, que reanalisasse os dados sobre cada uma dessas estrelas em detalhe, para calcular melhor suas idades. A confirmação da idade das estrelas pobres em ferro causou espanto. “Elas são jovens demais”, diz Chiappini. “Uma delas, por exemplo, tem a proporção de elementos químicos esperada para uma estrela com 10 bilhões de anos, mas sua idade é de apenas 2 bilhões de anos.” Exceto em circunstâncias muito especiais, os astrônomos dificilmente conseguem determinar a idade de estrelas da Via Láctea situadas a mais de 80 anos-luz de distância do Sol. A maioria dos telescópios não consegue determinar as propriedades de estrelas tão distantes com a precisão necessária para que os astrônomos consigam calcular a idade delas. Há, porém, uma maneira menos precisa de estimar se uma estrela longínqua é muito nova ou muito antiga examinando seus elementos químicos.

Relógio quebrado

Esse método é o do “relógio químico”, que se baseia no seguinte raciocínio: as primeiras estrelas da galáxia teriam nascido a partir de nuvens de gás primordial, composto apenas por elementos químicos leves – hidrogênio, hélio e um pouco de lítio –, criados durante o Big Bang, o evento que teria originado o Universo. A morte explosiva de estrelas gigantes, com massas de 8 a 10 vezes superiores à do Sol, teria acrescentado elementos químicos mais pesados ao gás primordial, especialmente os chamados elementos alfa: oxigênio, magnésio, silício, cálcio e titânio, criados a partir da fusão de núcleos de hélio no interior dessas estrelas.

Essas explosões, conhecidas como supernovas do tipo II, são as principais fontes desses elementos químicos na galáxia. Já a maior parte do ferro da Via Láctea vem de outro tipo de supernova, as variedades Ia. São estrelas anãs brancas que, depois de sugarem uma certa quantidade de gás de uma estrela gigante vizinha, acabam explodindo e espalhando átomos de ferro pela galáxia. As supernovas de tipo II demoram milhões de anos para explodir, enquanto as de tipo Ia levam muito mais, bilhões de anos. Essa diferença entre as escalas de tempo das supernovas funciona como um marcador temporal para estimar a data de nascimento das estrelas da Via Láctea. Desse modo, quanto maior a abundância de elementos alfa de uma estrela em relação à abundância de ferro, mais velha a estrela deve ser.

Até a identificação das 20 estrelas incomuns, o método do “relógio químico” parecia funcionar sempre. Em todos os casos nos quais havia sido possível fazer medições que permitiam calcular a idade das estrelas, os valores a que os astrônomos chegavam correspondiam bastante bem à estimativa obtida pelo “relógio químico. Em 2012, Chiappini e seus colegas chamaram a atenção para o fato de que seria possível usar o telescópio espacial CoRoT para obter idades de várias estrelas situadas a mais de 80 anos-luz do Sol, para as quais não havia outro méto–do disponível além do “relógio químico”. “O CoRoT mede variações de brilho a partir das quais podemos obter o raio, a massa e a distância da estrela”, ela explica. “Com esses dados, é possível calcular a idade.”

Desde então, Chiappini vem articulando uma colaboração entre astrônomos de especialidades que não costumam interagir. Chamada de CoRoGEE, a colaboração é uma parceria entre pesquisadores do CoRoT, instrumento mais conhecido por suas descobertas de exoplanetas, e pesquisadores envolvidos com o Apogee, que também conta com a participação de brasileiros ligados ao Laboratório Interinstitucional de e-Astronomia (LIneA), no Rio de Janeiro. Foi combinando os dados de estrelas observadas tanto pelo CoRoT quanto pelo Apogee que os pesquisadores descobriram as estrelas estranhas para as quais o relógio químico parece não funcionar.

“Seria possível formar uma estrela jovem com abundância elevada de elementos alfa em relação à de ferro”, Chiappini sugere, “caso uma porção de gás primordial pouco enriquecido por supernovas do tipo Ia houvesse sobrado em algum lugar isolado, sem participar da evolução química geral da galáxia”. Esse gás teria ficado ali por bilhões de anos, sem interagir com o gás do resto da galáxia, e só depois teria formado estrelas.

Os dados do Corot e do Apogee também sugerem que as 20 estrelas jovens feitas de material antigo tenham nascido em algum lugar do disco da Via Láctea a cerca de 20 mil anos-luz do centro galáctico, localizado perto de uma estrutura da galáxia chamada de barra. “É uma região em que se acredita que o gás e as estrelas do disco giram com a mesma velocidade que o gás e as estrelas da barra”, explica Chiappini. “Por essa razão, é mais difícil haver por ali os choques entre nuvens de gás necessários para formar as estrelas.” Se de fato se comportar assim, essa região pode ter abrigado bolsões de gás que mantiveram as características primordiais.

Gás intergaláctico

Outra possibilidade é que essas estrelas tenham se formado a partir de um gás de composição primordial que teria caído na Via Láctea apenas recentemente, vindo do meio intergaláctico. “Mas é difícil entender por que isso teria acontecido mais para o centro da galáxia e não em toda parte”, diz Chiappini. “Essa descoberta é interessante porque mostra que há diversos processos ocorrendo na nossa galáxia, em particular próximo à barra central”, diz a astrofísica Beatriz Barbuy, da Universidade de São Paulo (USP), que estuda a evolução química da Via Láctea.

“Sabemos, a partir da observação de outras galáxias e de modelos dinâmicos, que as barras permitem uma migração de gás e estrelas em dois sentidos, da barra para o disco e do disco para a barra. Os pesquisadores precisam descobrir mais dessas estrelas para entender sua origem. Isso será possível, eles esperam, combinando os dados da missão espacial Kepler-2 com os do Apogee-2, o novo levantamento de estrelas da Via Láctea que vem sendo realizado pelo projeto Sloan Digital Sky Survey.
Fonte: Pesquisa Fapesp

Especial Antimatéria: A destruição do Universo e as bananas

Especial Antimatéria: Destruição do Universo e as bananas

O experimento ALPHA, assim como o GBAR e o AEGIS, estão tentado descobrir se a antimatéria cai para cima ou para baixo. [Imagem: Chukman So]

Fatos sobre a antimatéria

Muitos acham que antimatéria é coisa de ficção científica, como na bomba de antimatéria de Anjos e Demônios ou no sistema de propulsão da nave estelar de Jornada nas Estrelas. Mas a antimatéria é um material bem real. Partículas de antimatéria são quase idênticas às suas equivalentes de matéria, exceto que possuem carga e rotação (spin) opostas. Quando a antimatéria se encontra com a matéria, ambas se aniquilam imediatamente em energia, emitindo um pulso de raios gama. É claro que ainda falta muito por saber, por exemplo, se a antimatéria pesa mais ou menos do que a matéria, ou mesmo se a antimatéria cai para baixo ou para cima. Talvez não sejam equivalentes ao que você vê na ficção, mas já existem canhões de antimatéria, garrafas para guardar antimatéria e já está sendo construído um desacelerador de partículas para estudar as antipartículas. Mas há muito outros fatos interessantes sobre a antimatéria. Neste especial, a ser publicado em cinco reportagens ao longo desta semana, destacaremos 10 desses fatos interessantes.

1. A antimatéria deveria ter aniquilado toda a matéria após o Big Bang

De acordo com a teoria, o Big Bang deve ter criado matéria e antimatéria em quantidades iguais, criando um Universo que, nos primeiros instantes, era líquido. Como ambas se aniquilam quando se encontram, não deixando nada para trás, exceto energia, se as teorias atuais estivessem completas, nada deveria existir. Mas nós existimos. E, tanto quanto os físicos podem dizer, é só porque, após a Grande Explosão, teria sido gerada uma partícula de matéria extra para cada bilhão de pares de matéria-antimatéria. Eles continuam trabalhando duro para tentar explicar essa assimetria entre matéria e antimatéria.

2. A antimatéria está mais perto de você do que você pensa

Pequenas quantidades de antimatéria chovem constantemente sobre a Terra sob a forma de raios cósmicos, partículas energéticas vindas do espaço. Estas partículas de antimatéria atingem nossa atmosfera a uma taxa que varia de menos de uma por metro quadrado, até mais de 100 por metro quadrado. Os físicos também têm visto indícios da produção de antimatéria acima das tempestades. Mas há outras fontes de antimatéria ainda mais próximas, algumas até dentro da sua casa. Por exemplo, as bananas produzem antimatéria, liberando um pósitron - o equivalente de antimatéria do elétron - aproximadamente a cada 75 minutos. Isto ocorre porque as bananas contêm uma pequena quantidade de potássio-40, um isótopo natural do potássio.

Conforme o potássio-40 decai, ele cospe um pósitron no processo. Nossos corpos também contêm potássio-40, o que significa você próprio pode estar emitindo pósitrons. A antimatéria se aniquila imediatamente em contato com a matéria, de modo que essas partículas de antimatéria têm um tempo de vida muito curto, não chegando a sair do seu corpo, que, tudo indica, lida muito bem com aniquilações de matéria e antimatéria em pequena escala.
Fonte: Inovação Tecnológica

Gêmeo de Júpiter descoberto em torno de gêmea do Sol

Equipe liderada por brasileiros em busca de Sistema Solar 2.0
Concepção artística de um gêmeo de Júpiter em torno da estrela HIP 11915Crédito:ESO/M. Kornmesser

Uma equipe internacional de astrônomos utilizou o telescópio de 3,6 metros do ESO para identificar um planeta como Júpiter a orbitar uma estrela do tipo do Sol, HIP 11915, à mesma distância da estrela que Júpiter do Sol. De acordo com as teorias atuais, a formação de planetas com a massa de Júpiter desempenha um papel importante na arquitetura de sistemas planetários. A existência de um planeta com a mesma massa e numa órbita semelhante à de Júpiter em torno de uma estrela do tipo do Sol abre a possibilidade de que o sistema planetário em torno desta estrela seja semelhante ao nosso próprio Sistema Solar. HIP 11915 tem aproximadamente a mesma idade que o Sol e, adicionalmente, a sua composição semelhante à do Sol sugere que possam existir também planetas rochosos em órbitas mais próximas da estrela.

Até agora, os rastreios de exoplanetas têm sido mais sensíveis a sistemas planetários que são povoados nas suas regiões mais internas por planetas massivos, com massas de, no mínimo, algumas vezes a massa da Terra. Este aspecto contrasta com o Sistema Solar, onde  existem pequenos planetas rochosos nas regiões interiores e gigantes gasosos como Júpiter mais para o exterior. De acordo com as teorias mais recentes, a arquitetura do Sistema Solar, tão propícia ao desenvolvimento de vida, foi possível graças à presença de Júpiter e da sua influência gravitacional exercida no Sistema Solar durante a fase da sua formação. Este fato leva-nos a crer que encontrarmos um planeta gêmeo de Júpiter é um marco importante na busca de um sistema planetário que seja semelhante ao nosso.

Uma equipe liderada por brasileiros tem observado estrelas do tipo do Sol numa tentativa de encontrar um sistema planetário semelhante ao nosso. A equipe descobriu agora um planeta com uma massa muito semelhante à de Júpiter, em órbita de uma estrela do tipo do Sol, HIP 11915, e quase exatamente na mesma posição que Júpiter ocupa no nosso Sistema Solar. A nova descoberta foi feita com o auxílio do
HARPS, um dos instrumentos mais precisos a detectar exoplanetas, montado no telescópio de 3,6 metros do ESO no Observatório de La Silla, no Chile.

Embora já se tenham descoberto muitos planetas semelhantes a Júpiter a uma variedade de distâncias de estrelas do tipo solar, o planeta recentemente descoberto, tanto em termos de massa como de distância à sua estrela hospedeira, e em termos de semelhança entre esta estrela e o nosso Sol, é o análogo mais preciso encontrado até agora do Sol e de Júpiter. A hospedeira do planeta, a gêmea solar HIP 11915, não é apenas semelhante ao Sol em termos de massa, mas tem também aproximadamente a mesma idade. Fortalecendo ainda mais as similaridades, a composição desta estrela é semelhante à do Sol. A assinatura química do nosso Sol pode estar parcialmente marcada pela presença de planetas rochosos no Sistema Solar, o que aponta por isso para a possibilidade de existência de planetas rochosos em torno de HIP 11915.

De acordo com Jorge Melendez, da Universidade de São Paulo, Brasil, líder da equipe e co-autor do artigo científico que descreve estes resultados, a procura de uma Terra 2.0 e de um Sistema Solar 2.0 completo, é um dos esforços mais excitantes da astronomia. Estamos muito entusiasmados por fazer parte desta investigação de vanguarda, tornada possível pelas infraestruturas observacionais disponibilizadas pelo ESO.

Megan Bedell, da Universidade de Chicago e autora principal do artigo científico, conclui: “Após duas décadas de busca de exoplanetas, estamos finalmente vendo planetas gigantes gasosos de período longo semelhantes aos do nosso próprio Sistema Solar, graças à estabilidade de longo termo de instrumentos “caçadores de planetas” como o HARPS. Esta descoberta é, em todos os aspectos, um sinal muito estimulante de que existem outros sistemas solares à espera de serem descobertos. São necessárias observações de acompanhamento para confirmar e delimitar a descoberta, mas HIP 11915 é, até agora, uma das mais promissoras candidatas a abrigar um sistema planetário semelhante ao nosso.
Fonte: ESO

Novo sistema planetário é descoberto apenas 54 anos-luz da Terra

Impressão artística que mostra a distância da estrela (HD 7924) e seus planetas do sol ("Sun")
Impressão artística que mostra a distância da estrela (HD 7924) e seus planetas do sol (“Sun”)

Astrônomos encontraram uma maneira de acelerar a busca por exoplanetas próximos de nós, o que levou a descoberta de um sistema planetário a apenas 54 anos-luz de distância da Terra. A maioria dos mundos recém-descobertos estão longe o suficiente para tornar seu estudo difícil. Até agora, a busca por esses mundos tem contado com supervisão humana, o que inevitavelmente retarda o progresso. Então como poderíamos procurar mais planetas de forma mais rápida a fim de encontrar alguns mais próximos de nós?

A ideia

Essa foi a questão que os astrônomos responderam com o Automated Planet Finder (APF, na sigla inglês, que significa “Procurador de Planeta Automatizado”, em tradução livre). Nós inicialmente utilizávamos o APF como um telescópio regular que ficava a noite toda procurando estrelas”, explica o estudante de graduação da Universidade do Havaí (EUA), B. J. Fulton. “Mas a ideia de deixar um computador tomar o turno da noite ficou mais atraente depois de meses de pouco sono. Então, escrevemos um software para nos substituir. Uma das estrelas que o APF foi instruído a investigar era a HD 7924. A 54 anos-luz de distância de nós, ela é muito mais próxima que a maioria dos planetas que o Telescópio Kepler, da NASA, já revelou.

Sistema com no mínimo três planetas

Em 2009, o Observatório Keck, no Havaí, encontrou um planeta ao redor de HD 7924 com um período orbital de apenas cinco dias. Nossas pesquisas anteriores de planetas extra-solares nos ensinaram que, onde há um planeta, geralmente há mais, o que tornou a HD 7924 um alvo natural para um estudo mais aprofundado. O Observatório Keck continuou a analisá-la, e a combinação de suas observações, bem como as mais recentes feitas pelo APF, mostraram provas de mais dois planetas. Esses novos planetas também estão muito próximos à estrela, com períodos orbitais de 15 e 24 dias. Em comparação, Mercúrio leva 88 dias para orbitar o sol. A HD 7924 emite menos de dois quintos da luz que o sol emite, mas esses planetas ainda estão próximos o suficiente da estrela para serem muito quentes para a vida existir em sua superfície.

Potencial enorme

O interesse da nova descoberta vem em parte da demonstração de técnicas que poderiam ser usadas para ajudar os astrônomos a encontrar planetas mais semelhantes ao nosso. O software do APF poderia ser uma ferramenta muito útil. Este nível de automação é um divisor de águas na astronomia”, disse o líder da equipe, Dr. Andrew Howard, da Universidade do Havaí. “É um pouco como ter um carro sem motorista que vai a compras por planetas. Além disso, as novas descobertas também expandem nosso conhecimento limitado da categoria de planetas conhecidos como “super-Terras”, aqueles com massas entre a do nosso planeta e a de Netuno. Os três planetas são diferentes de tudo em nosso sistema solar, com massas 7 a 8 vezes a da Terra e órbitas que os levam muito próximos de sua estrela hospedeira. Esse tipo de planeta parece ser muito comum no universo, mas ainda estamos em grande parte apenas especulando sobre sua composição.
Fontes: Hypescience.com
[IFLS]


Novo rastreio enorme irá ajudar a compreender a matéria escura

Primeiros resultados do rastreio KiDS do VST
Primeiros resultados do rastreio KiDS (montagem)Crédito:Kilo-Degree Survey Collaboration/A. Tudorica & C. Heymans/ESO

Foram divulgados os primeiros resultados de um novo rastreio importante de matéria escura no céu austral, levado a cabo pelo VLT Survey Telescope do ESO (VST), montado no Observatório do Paranal, no Chile. O rastreio KiDS do VST permitirá aos astrônomos fazer medições precisas de matéria escura, da estrutura de halos de galáxias e da evolução de galáxias e aglomerados. Os primeiros resultados KiDS mostram como é que as características das galáxias observadas são determinadas pelos enormes halos de matéria escura invisível que as rodeiam.

Cerca de 85% da matéria do Universo é escura e de um tipo que não é compreendido pelos físicos. Embora esta matéria não brilhe nem absorva radiação, os astrônomos conseguem detectá-la através do efeito que tem sobre estrelas e galáxias, particularmente devido à sua atração gravitacional. Um projeto importante que utiliza os telescópios de rastreio do ESO acaba de mostrar de modo extremamente claro a ligação entre esta misteriosa matéria escura e as galáxias brilhantes que observamos de forma direta.

O projeto, chamado
Kilo-Degree Survey (KiDS), faz uso de imagens do VLT Survey Telescope e da sua enorme câmera, a OmegaCAM. Situado no Observatório do Paranal no Chile, este telescópio dedica-se a mapear o céu noturno no visível — sendo complementado pelo telescópio de rastreio infravermelho, o VISTA. Um dos objetivos principais do VST é mapear a matéria escura e utilizar estes mapas para compreender a misteriosa energia escura que faz com que a expansão do Universo esteja acelerando.

A melhor maneira para descobrir onde é que se encontra a matéria escura é utilizar o efeito de
lente gravitacional — a distorção do tecido do Universo devido à gravidade, a qual deflete a radiação emitida por galáxias distantes, que se encontram muito além da matéria escura. Ao estudar este efeito, é possível mapear os lugares onde a gravidade é mais forte, e portanto descobrir onde é que a matéria, incluindo a matéria escura, se encontra. Fazendo parte da primeira remessa de artigos científicos, a equipe internacional de pesquisadores KiDS, liderada por Koen Kuijken do Observatório de Leiden, na Holanda, utilizou este método para analisar imagens de mais de dois milhões de galáxias, a cerca de 5,5 bilhões de anos-luz de distância.  A equipe estudou a distorção da radiação emitida por estas galáxias, que se curva ao passar por enormes halos de matéria escura no seu percurso até à Terra.

Os primeiros resultados vêm de apenas 7% da área total do rastreio e concentram-se em mapear a distribuição de matéria escura em grupos de galáxias. A maioria das galáxias vivem em grupos — incluindo a nossa própria Via Láctea que faz parte do Grupo Local — e compreender quanta matéria escura é que contêm é um teste crucial à teoria de formação de galáxias na rede cósmica. Os resultados obtidos através do efeito de lente gravitacional mostram que estes grupos contêm cerca de 30 vezes mais matéria escura que matéria visível.

O mais interessante é que a galáxia mais brilhante encontra-se quase sempre no meio do halo de matéria escura,” diz Massimo Viola (Observatório de Leiden, Holanda), autor principal de um dos primeiros artigos científicos do KiDS. Esta previsão da teoria de formação de galáxias, que diz que as galáxias continuam a juntar-se em grupos e a concentrar-se nos seus centros, nunca tinha sido demonstrada anteriormente de modo observacional de forma tão clara ,” acrescenta Koen Kuijken.

Estes resultados são apenas o início de um programa principal que vai explorar bases de dados enormes obtidas pelos telescópios de rastreio, sendo que estes dados começam agora a ficar disponíveis a todos os cientistas do mundo através do arquivo do ESO. O rastreio KiDS ajudará a aumentar o nosso conhecimento da matéria escura. Ser capaz de explicar a matéria escura e os seus efeitos representará um enorme avanço na física.
Fonte: ESO

Related Posts Plugin for WordPress, Blogger...