26 de out de 2015

O universo tem atalhos para se viajar no tempo e no espaço?

Ilustração de "wormhole" (buraco de minhoca), um atalho no universo que permitiria viajar no tempo-espaço

Ilustração de "wormhole" (buraco de minhoca), um atalho no universo que permitiria viajar no tempo-espaço


Com falta de água e de energia, excesso de poluição e florestas cada vez mais ameaçadas, a ideia de habitar um outro planeta e começar tudo de novo cai como uma luva. A questão é que, se o ser humano ainda não conseguiu pisar nem em Marte, imagine explorar planetas de outros sistemas solares ou galáxias.  Sem tecnologia disponível para percorrer tamanhas distâncias, a solução seria encontrar um atalho, ou melhor, um "buraco de minhoca", como mostrado no filme "Interestelar", de Christopher Nolan.  Buracos de minhoca são maneiras especiais de se dobrar o espaço-tempo de forma a conectar dois 'eventos' através de um 'intervalo' menor do que aquele que seria possível em um espaço-tempo plano", explica o físico Cássius Anderson de Melo, professor da Universidade Federal de Alfenas - Campus Poços de Caldas e da Universidade Estadual Paulista (Unesp).

Entenda como "evento" tudo o que acontece no Universo, ensina o professor. Já o "intervalo" é uma espécie de distância entre os eventos, mas que leva em conta não apenas a distância espacial entre eles, como também o tempo em que ocorreram. Para tentar ilustrar a ideia para os leigos, o físico Adilson de Oliveira, da Universidade Federal de São Carlos (UFSCar) sugere que você imagine um tecido esticado, como uma toalha. Pense, então, em dois pontos desenhados em cada uma das extremidades, separados por todo o comprimento do pano.  Imagine que algo extremamente pesado caia no meio do pano. Isso vai provocar uma curvatura naquele "espaço", fazendo o tecido se dobrar como uma folha de jornal. E os pontos, antes nas extremidades, passam a ficar bem próximos um do outro. Com uma agulha grossa, você pode fazer um furo para conectá-los, o que faria do objeto pontiagudo um buraco de minhoca.

VERME DE FRUTA
O nome dado a essa estrutura foi pensado por causa dos vermes das frutas ("worm", em inglês, pode ser traduzido como verme ou minhoca e "hole" significa buraco). Como esses bichos, um eventual viajante no espaço-tempo, em vez de se mover pela "superfície da maçã", pegaria um atalho para o lado oposto por meio de um túnel em seu miolo. É o que fizeram os personagens de "Interestelar" para chegar ao sistema planetário dominado por um buraco negro, chamado Gargântua.  Mesmo quem não assistiu ao filme de Nolan deve saber que ele foi feito em parceria com um pesquisador aposentado do Caltech (Instituto de Tecnologia da Califórnia), Kip Thorne. Basta dizer que Thorne foi um dos maiores estudiosos dos buracos de minhoca, e teve suas pesquisas supervisionadas por John Wheeler, físico que cunhou o nome, em 1957, em analogia aos vermes de frutas.

Albert Einstein, em parceria com outro cientista, chamado Nathan Rosen, chegou a especular sobre algo parecido com o que hoje se chama de buraco de minhoca, mas o tema não chegou a ser desenvolvido. Inicialmente, a ideia de Thorne era apenas estudar soluções de simetria cilíndrica; porém, após um telefonema de Carl Sagan, que estava escrevendo um livro de ficção (o famoso 'Contato'), Thorne percebeu que havia uma nova via teórica a ser explorada: como formar buracos de minhoca", conta o professor da Federal de Alfenas.

O fato de Thorne ter ajudado Nolan faz o filme parecer realista, do ponto de vista científico, embora vários "furos" já tenham sido criticados por especialistas, na imprensa. Mas será que buracos de minhoca são mesmo possíveis, ainda que sua existência não tenha sido comprovada?

Pelos conceitos da Física atual, não há nada que proíba essa possibilidade. Já dizer que ela existe é algo bem diferente. "A matéria necessária para isso deveria ter propriedades muito estranhas, como energia negativa, por exemplo", diz Melo.  Graças aos imensos aceleradores de partículas, hoje sabe-se que é possível provocar essa energia negativa muito rapidamente. Manter um buraco a ponto de alguém atravessá-lo é outra história.

ENORMES
Para causar tamanha deformidade no "tecido" do espaço-tempo, o objeto teria que conter uma energia considerável. "Essa matéria teria de ser diferente de tudo que conhecemos aqui na Terra, ou mesmo que já tenhamos observado pelo Universo", comenta Adilson de Oliveira.  Vale esclarecer que as deformidades no espaço-tempo são criadas o tempo todo por causa da gravidade, como previu Einstein. Cada um de nós, assim como o nosso Sol, provoca algum estrago, só que ele é desprezível.  "Para haver efeitos significativos seria necessário objetos muito massivos como buracos negros ou estrela de nêutrons para produzi-los. Mas até agora nenhum objeto como esse foi diretamente observado", diz Oliveira.

Se essa matéria bizarra, que tornaria os buracos de minhoca viáveis, realmente existisse em grandes quantidades e há bastante tempo, ela certamente produziria um efeito que já teria sido observado pelos cientistas, afirma o professor da UFSCar. Por isso, físicos como Stephen Hawking já especularam que, se os buracos de minhoca existem, eles devem ser microscópicos tanto no espaço quanto no tempo, a ponto de não produzir nenhum grande efeito. Eles seriam como as falhas que existem em qualquer tipo de tecido.

"Buracos de minhoca grandes e estáveis, de tamanho astronômico (tamanho de planetas ou maiores) ou não existem ou são tão raros que seria mais fácil alguém ganhar na Mega Sena dez vezes seguidas (sem maracutaia!); os microscópicos também precisariam ser tão pequenos e breves que não alterariam nada daquilo que observamos usualmente", defende Melo. "Dizer se isto ou aquilo será observado algum dia é muita especulação para um cientista profissional.  Dá para perceber que o assunto é tão complexo, que a solução encontrada no filme de Nolan foi a de que uma civilização extraterrena avançada teria sido a responsável pela abertura do túnel no espaço-tempo. Transferindo a "batata quente" para a ficção, fica mais fácil justificar a existência de um buraco tão profundo.
Fonte: UOL

Astrônomos capturam momento em que buraco negro despedaça estrela

A ilustração mostra um disco de detritos estelares em torno do buraco negro no canto superior esquerdo. A longa cauda de detritos estelares ejetados se estende para a direita, se distanciando do buraco negro.
A ilustração mostra um disco de detritos estelares em torno do buraco negro no canto superior esquerdo. A longa cauda de detritos estelares ejetados se estende para a direita, se distanciando do buraco negro.

Quando uma estrela chega muito perto de um buraco negro, a intensa gravidade dos buracos negros em resultados forças de maré que podem despedaçar a estrela. Nestes eventos, chamados de perturbações de maré, alguns dos detritos estelares são arremessados ​​para fora a velocidades elevadas, enquanto o restante cai no buraco negro. Isto provoca uma distinta labareda de raio-X que pode durar anos. Uma equipe de astrônomos, incluindo vários da Universidade de Maryland, nos Estados Unidos, tem observado um evento de perturbação de marés em uma galáxia que se encontra cerca de 290 milhões de anos luz da Terra. O evento é a perturbação de maré mais próxima descoberta na última década, e é descrita em um artigo publicado na edição de 22 de outubro de 2015 da revista “Nature”.

Estes resultados suportam algumas das nossas ideias mais recentes sobre a estrutura e evolução de eventos de perturbação de maré”, disse o co-autor Coleman Miller, professor de astronomia na Universidade de Maryland e diretor do Joint Space-Science Institute, ao site Phys.org. “No futuro, as perturbações de maré podem nos fornecer laboratórios para estudar os efeitos de extrema gravidade”.

DESCOBERTA
O All-Sky Automated Survey for Supernovae (ASAS-SN) – um projeto de baixo custo dedicado ao monitoramento fotométrico constante de todo o céu disponível – descobriu originalmente esta perturbação das marés, conhecida como ASASSN-14li, em novembro de 2014. O evento ocorreu perto de um buraco negro supermassivo no centro da galáxia PGC 043234. Outros estudos, usando o Observatório de Raios-X Chandra da NASA, o satélite Swift da NASA, e o satélite XMM-Newton da Agência Espacial Europeia, forneceram uma imagem mais clara analisando as emissões de raios-X da perturbação da maré. Temos visto evidências de algumas perturbações das marés ao longo dos anos e temos desenvolvido uma série de ideias sobre o que se passa”, explica o pesquisador líder no estudo, Jon Miller, professor de astronomia na Universidade de Michigan. “Esta é a melhor chance que tivemos até agora para realmente entender o que acontece quando buracos negros despedaçam uma estrela”.

Depois que uma estrela é destruída por uma perturbação das marés, as intensas forças gravitacionais do buraco negro atraem a maioria dos restos da estrela. O atrito aquece estes detritos, gerando enormes quantidades de radiação de raios-X. Seguindo essa onda de raios-X, a quantidade de luz diminui à medida que o material estelar cai para além do horizonte do evento do buraco negro – o ponto além do qual nenhuma luz ou outras informações podem escapar. Muitas vezes o gás cai em direção a um buraco negro espiralando para dentro dele e formando um disco. Mas o processo que cria estas estruturas em formato de disco, conhecidas como discos de acreção, permanece um mistério. Ao observar a ASASSN-14li, a equipe de astrônomos conseguiu testemunhar a formação de um disco de acreção no momento em que ela acontecia, observando a luz de raios-X em diferentes comprimentos de onda e acompanhando como essas emissões mudavam ao longo do tempo.

O QUE ACONTECE
Os pesquisadores determinaram que a maioria dos raios-X são produzidos por materiais que estão extremamente próximos do buraco negro. Na verdade, o material mais brilhante pode ocupar a menor órbita estável possível. Porém, os astrônomos estão igualmente interessados em saber o que acontece com o gás que não é puxado para além do horizonte do evento, mas, em vez disso, é ejetado para longe do buraco negro.  O buraco negro despedaça a estrela e começa a engolir o material muito rapidamente, mas não acaba aí”, conta o co-autor Jelle Kaastra, astrônomo do Instituto de Pesquisas Espaciais, na Holanda. “O buraco negro não pode manter esse ritmo então um pouco daquele material. Os dados de raios-X também sugerem a presença de um vento se afastando do buraco negro, transportando gás estelar para fora. No entanto, este vento não chega a se mover rápido o suficiente para escapar do alcance gravitacional do buraco negro.

Uma possível explicação para a baixa velocidade do vento é que este gás da estrela destruída segue uma órbita elíptica em torno do buraco negro, e viaja mais lentamente quando atinge a maior distância do buraco negro, nos extremos desta órbita elíptica. Este resultado destaca a importância de observações multi-comprimento de onda”, explica a co-autora Suvi Gezari, professora assistente de astronomia na Universidade de Maryland. “Mesmo que o evento tenha sido descoberto com um telescópio de rastreio óptico, observações de raios-X imediatas foram fundamentais na determinação da temperatura característica e do raio da emissão e na captura das assinaturas de um escoamento. Os astrônomos esperam encontrar e estudar mais eventos como a ASASSN-14li para que possam continuar a testar modelos teóricos sobre como os buracos negros afetam os ambientes ao seu redor, ao mesmo tempo em que aprendem mais sobre o que os buracos negros fazem para quaisquer estrelas ou outros corpos que passem muito perto deles.
Fonte: Phys.org, Nature

Related Posts Plugin for WordPress, Blogger...