26 de out de 2016

O VLT do ESO detecta halos gigantes brilhantes inesperados em torno de quasars distantes

Esta imagem composta mostra 18 dos 19 quasars observados por uma equipa internacional de astrónomos, liderada pelo ETH de Zurique, na Suíça. Cada um dos quasars observados encontra-se rodeado por um halo gasoso brilhante. Esta é a primeira vez que um rastreio de quasars mostra tais halos brilhantes em torno de todos os quasars observados.A descoberta foi feita com o auxílio do instrumento MUSE montado no Very Large Telescope do ESO.Créditos:ESO/Borisova et al.

Uma equipe internacional de astrónomos descobriu nuvens de gás brilhante em torno de quasars distantes. Esta é a primeira vez que todos os quasars num rastreio apresentam estes halos, dos quais as assinaturas inconfundíveis foram observadas pelo instrumento MUSE montado no Very Large Telescope do ESO. As propriedades dos halos desta descoberta surpreendente encontram-se também em total desacordo com as atuais teorias aceites para a formação de galáxias no Universo primordial.

Uma colaboração internacional de astrónomos, liderada por um grupo do Instituto Federal de Tecnologia da Suíça (ETH), em Zurique, usou o poder sem precedentes do instrumento MUSE montado no Very Large Telescope (VLT), instalado no Observatório do Paranal do ESO, para estudar o gás que rodeia galáxias ativas distantes, observadas a menos de dois mil milhões de anos após o Big Bang. Estas galáxias ativas, chamadas quasars, contêm buracos negros supermassivos nos seus centros, os quais consomem estrelas, gás e qualquer outro material a taxas extremamente elevadas. Este fenómeno, por sua vez, faz com que os centros destas galáxia emitam enormes quantidades de radiação, tornando os quasars os objetos mais luminosos e ativos do Universo.

O estudo envolveu 19 quasars, seleccionados entre os mais brilhantes que podiam ser observados com o MUSE. Estudos anteriores tinham mostrado que cerca de 10% de todos os quasars examinados se encontram rodeados por halos compostos de gás do
meio intergaláctico, halos estes que se estendem até cerca de 300 000 anos-luz de distância dos centros dos quasars. No entanto, este novo estudo revelou-se surpreendente, detectando halos enormes em torno de todos os 19 quasars observados — muito mais do que os dois halos que se esperavam estatisticamente. A equipa suspeita que este efeito se deva ao enorme aumento de poder de observação do MUSE comparativamente aos instrumentos do mesmo tipo anteriormente utilizados, no entanto são necessárias mais observações para se determinar se este é efetivamente o caso.

“Ainda é cedo para dizer se este resultado se deve à nossa nova técnica observacional ou se se trata de algo peculiar nos quasars da nossa amostra.  Ainda temos muito que aprender; começámos agora uma nova era de descobertas”, disse a autora principal do trabalho Elena Borisova, do ETH de Zurique. O objetivo inicial do estudo era analisar as componentes gasosas do Universo a larga escala: a estrutura por vezes referida como
rede cósmica, da qual os quasars são nodos brilhantes. As componentes gasosas desta rede são normalmente extremamente difíceis de detectar, por isso os halos iluminados de gás que rodeiam os quasars fornecem-nos uma oportunidade quase única para estudar o gás no seio desta estrutura cósmica de larga escala.

Os 19 halos recentemente detectados revelaram também outra surpresa: são constituídos por gás intergaláctico relativamente frio — com cerca de 10 000 graus Celsius. Esta descoberta está em perfeito desacordo com os atuais modelos aceites geralmente para a estrutura e formação de galáxias, os quais sugerem que gás tão próximo das galáxias deve apresentar temperaturas superiores a um milhão de graus.

A descoberta mostra o potencial do instrumento na observação deste tipo de objetos. Sebastiano Cantalupo, co-autor do trabalho, está muito entusiasmado com o novo instrumento e as oportunidades que este nos traz: “Neste estudo explorámos as capacidades únicas do MUSE, o que nos abre caminho para futuros rastreios. Combinada com uma nova geração de modelos teóricos e numéricos, esta aproximação continuará a proporcionar-nos uma nova janela para a formação da estrutura cósmica e evolução de galáxias.”
Fonte: ESO

Descoberto objetos cósmicos misteriosos que explodem em raios X

Animação da erupção da fonte de raios-X na galáxia NGC 5128.
Crédito: NASA/CXC/UA/J. Irwil et al.

Astrónomos descobriram um par de objetos cósmicos extraordinários que explodem dramaticamente em raios-X. Esta descoberta, obtida com o Observatório de raios-X Chandra da NASA e com o Observatório XMM-Newton da ESA, pode representar uma nova classe de eventos explosivos encontrados no espaço. As misteriosas fontes de raios-X tornam-se cerca de cem vezes mais brilhantes em menos de um minuto, antes de regressar aos níveis de raios-X originais após mais ou menos uma hora. No seu pico, estes objetos qualificam-se como ULXs ("ultraluminous X-ray sources", em português "fontes ultraluminosas de raios-X") que emitem centenas até milhares de vezes mais raios-X do que os típicos sistemas binários onde uma estrela orbita um buraco negro ou uma estrela de neutrões.

"Nunca vimos nada como isto," afirma Jimmy Irwin da Universidade do Alabama, EUA, que liderou o estudo publicado na última edição da revista Nature. "Os astrónomos têm visto muitos objetos diferentes que explodem de brilho, mas estes podem ser exemplos de um fenómeno inteiramente novo. Sabemos que os magnetares - estrelas de neutrões jovens com campos magnéticos poderosos - produzem explosões brilhantes e rápidas de raios-X, mas estes objetos recém-descobertos são diferentes em alguns aspetos fundamentais. Em primeiro lugar, os magnetares demoram alguns segundos para diminuir de brilho após uma explosão. Em segundo lugar, estes novos objetos encontram-se em populações de estrelas velhas situadas em galáxias elípticas, galáxias esféricas ou em forma de ovo compostas principalmente por estrelas mais velhas.

Isto torna improvável que estes recém-descobertos objetos brilhantes sejam jovens, astronomicamente falando, como se pensa que os magnetares sejam. Além disso, estes objetos são mais brilhantes em raios-X durante os seus períodos "calmos. Estas erupções são extraordinárias," comenta Peter Maksym, coautor do Centro Harvard-Smithsonian para Astrofísica. "Por um breve período, uma das fontes tornou-se das mais brilhantes ULXs alguma vez observadas numa galáxia elíptica."

Quando não estão a explodir de brilho, estas fontes parecem ser sistemas binários normais onde um buraco negro ou uma estrela de neutrões puxa material de uma companheira estelar parecida com o Sol. Isto indica que os aumentos de brilho não perturbam significativamente o sistema binário. Embora a natureza destas explosões seja desconhecida, a equipa começou a procurar respostas. Uma ideia é que as explosões representam episódios em que a matéria que está a ser puxada da estrela companheira cai rapidamente para um buraco negro ou estrela de neutrões. Isto pode acontecer quando a companheira faz a sua maior aproximação ao objeto compacto na sua órbita elíptica.

Outra explicação pode envolver matéria que cai para um buraco negro de massa intermédia, com uma massa de aproximadamente 800 vezes a do Sol para uma fonte e 80 vezes a massa do Sol para a outra. Agora que descobrimos estes objetos, os astrónomos observacionais e os teóricos vão trabalhar duro para descobrir o que está a acontecer," afirma o coautor Gregory Sivakoff da Universidade de Alberta, Canadá.

O Chandra observou uma das fontes, localizada perto e presumivelmente associada com a galáxia NGC 4636 a uma distância de 47 milhões de anos-luz, a aumentar de brilho uma vez. Observou-se outra fonte a explodir de brilho cinco vezes, localizada perto da galáxia NGC 5128 a uma distância de 14 milhões de anos-luz. Quatro destas explosões foram observadas com o Chandra e uma com o XMM-Newton. A equipa analisou variações de raios-X de vários milhares de fontes nas observações de 70 galáxias próximas com o Chandra. Apesar de terem sido encontrados vários exemplos de fontes "explosivas", nenhuma exibia o comportamento das explosões rápidas e gigantescas aqui relatadas.
Fonte: Astronomia Online


25 de out de 2016

Planeta Nove pode trazer final trágico para Sistema Solar

"A existência de um planeta massivo distante pode mudar fundamentalmente o destino do Sistema Solar." [Imagem: University of Warwick]

Sai, Nibiru!
Talvez os especuladores e "teóricos alternativos", curiosamente sempre prontos a prever armagedons, não tenham passado tão longe assim da realidade - embora, felizmente, tenham errado no tempo. O lendário e tão procurado Planeta X - agora rebatizado de Planeta Nove - pode de fato selar um destino desastroso para o Sistema Solar.  Pelo menos é que calcula o professor Dimitri Veras, da Universidade de Warwick, no Reino Unido. Mas é bom que se frise: São conjecturas e hipóteses e, ainda que todas se provem corretas - incluindo a existência do Planeta Nove -, os efeitos só se farão sentir depois que a vida na Terra já tiver sido extinta há muito tempo, de morte natural, por assim dizer.

Sinuca planetária
Segundo Veras, a presença do Planeta X, ou Nove, poderia causar a eliminação de pelo menos um dos planetas gigantes depois que o Sol morrer, lançando-o para o espaço interestelar através de uma espécie de "efeito sinuca. Quando o Sol começar a morrer, daqui a cerca de sete bilhões de anos, ele vai expulsar metade de sua própria massa e inflar a ponto de engolir a Terra, antes de apagar como uma brasa, tornando-se uma anã branca. Essa ejeção de massa solar vai empurrar Júpiter, Saturno, Urano e Netuno para o que os astrofísicos vêm pressupondo ser uma distância segura, o que os manteria essencialmente íntegros - mas com uma queda de temperatura que induziria alterações internas difíceis de prever. No entanto, o professor Veras afirma que a existência do Planeta Nove pode reescrever esse "final feliz" para nossos irmãos grandalhões.
Como a órbita do Planeta X ainda é incerta - se é que ele existe de fato - o pesquisador simulou diversas possibilidades e seus impactos sobre o Sistema Solar. [Imagem: Dimitri Veras]

Planeta fatal
Veras calcula que o Planeta Nove pode não ser empurrado para fora da mesma maneira, já que está muito distante, podendo na verdade ser puxado para dentro, entrando em uma dança fatal com os quatro planetas gigantes conhecidos do Sistema Solar - mais notavelmente com Urano e com Netuno. O resultado mais provável, de acordo com suas simulações, seria a ejeção para fora do Sistema Solar de um desses planetas. Em seu simulador, o pesquisador mapeou várias posições diferentes onde o Planeta Nove poderia mudar o destino do Sistema Solar. Quanto mais longe ele estiver, e quanto mais maciço for, maior a chance de que o Sistema Solar vá experimentar um futuro violento. "A existência de um planeta massivo distante poderia mudar fundamentalmente o destino do Sistema Solar. Urano e Netuno, em particular, podem não estar mais a salvo dos suspiros finais do Sol. O destino do Sistema Solar vai depender das propriedades orbitais e de massa do Planeta Nove, se ele existir," finalizou Veras.
Fonte: Inovação Tecnológica


O universo está expandindo aceleradamente. Mesmo?


Há cinco anos, três astrônomos receberam prêmio Nobel por um trabalho realizado no final da década de 1990, em que provavam que o universo está se expandindo de forma acelerada. A conclusão veio da análise da Supernova tipo Ia – a espetacular explosão termonuclear de estrelas que estão morrendo – identificada pelo telescópio Hubble e outros grandes telescópios na Terra. Isso gerou a aceitação geral da ideia de que o universo é dominado por uma substância misteriosa chamada “energia escura” que guia essa expansão acelerada. Agora, um grupo de cientistas liderados por Subir Sarkar, do departamento de física da Universidade de Oxford, coloca em dúvida este conceito. Uma enorme quantidade de dados foi analisada: um catálogo de 740 Supoernovas tipo Ia, mais de dez vezes o número do estudo original. E os pesquisadores encontraram evidência de que a aceleração pode ser muito inferior ao que foi inicialmente imaginado, com dados consistentes com um nível de aceleração constante.

O estudo foi publicado na revista Scientific Reports. O professor Sarkar, que também trabalha no Instituto Niels Bohr em Copenhague, afirmou que a descoberta da expansão acelerada conquistou vários prêmios, entre eles o Nobel, mas que atualmente há mais dados que servem de base para análise estatística.

“Descobrimos evidência de que o modelo da aceleração é, no máximo, o que físicos chamam “sigma 3”. Isso faz referência ao “sigma 5” padrão necessário para alegar uma descoberta de grande significância”, diz ele. Outros dados que parecem apoiar a ideia de um universo em aceleração também são considerados por Sarkar como “testes indiretos, conduzidos no contexto do modelo suposto”, ataca ele. “É possível que tenhamos sido induzidos a um erro de análise de dados por causa de um modelo teórico muito simplificado – um modelo que na verdade foi construído na década de 1930, muito anterior a qualquer dado real”.

“Naturalmente, muito trabalho será necessário para convencer a comunidade dos físicos sobre isso, mas nosso trabalho serve para demonstrar que um pilar-chave do modelo padrão cosmológico é instável. Processos significantes serão feitos quando o Telescópio Europeu Extremamente Grande fizer observações com um ‘pente laser’ ultrassensível para medir diretamente um período entre 10 a 15 anos para ver se o nível de expansão realmente está se acelerando”, conclui ele. Este questionamento pode colocar o mundo da física e astronomia de pernas para o ar caso se confirme como confiável.
Fonte: Hypescience.com

Novos dados dispensam Matéria Escura para explicar Universo

A equipe usou dados de infravermelho captados pelo telescópio espacial Spitzer - esta é a imagem da galáxia NGC 7793 vista pelo Spitzer. [Imagem: NASA/JPL-Caltech/R Kennicutt/SINGS]

Velocidade radial
Uma medição inédita da velocidade rotacional das estrelas em centenas de galáxias trouxe resultados que estão fazendo balançar as duas principais teorias sobre o funcionamento do Universo - uma delas até quase cair. Segundo essas medições, a matéria escura simplesmente não existe, e as leis da gravitação de Newton precisam de um ajuste para explicar como a gravidade funciona em distâncias muito grandes. Stacy McGaugh, Federico Lelli (Universidade Case Western) e James Schombert (Universidade do Oregon) mediram a aceleração gravitacional de estrelas em 153 galáxias de diversos tamanhos, brilhos e velocidades de rotação. E descobriram que a velocidade rotacional das estrelas apresenta uma forte correlação com a massa visível das galáxias, sem necessidade de levar em conta uma hipotética matéria escura que evitaria que as estrelas fossem arremessadas para fora das galáxias.

Sem matéria escura
A correlação é baseada no cálculo da razão massa/luz das galáxias, a partir da qual a distribuição da sua massa visível e da gravidade atuante é calculada. Os astrônomos já haviam tentado fazer essa medição usando a luz visível, mas os dados são distorcidos pelas estrelas gigantes, milhões de vezes mais luminosas que o Sol. A equipe então decidiu fazer as medições usando as emissões de infravermelho, já que essa faixa do espectro é emitida sobretudo pelas estrelas de menor massa e pelas gigantes vermelhas, ambas muito mais comuns, dando um resultado mais preciso da massa da galáxia. Os resultados são surpreendentes porque a hipótese mais aceita pelos astrônomos e astrofísicos estabelece que as galáxias deveriam estar envoltas em densos halos de matéria escura. E os dados indicam também um desvio sistemático em relação às previsões baseadas no modelo newtoniano das leis de gravidade, implicando que há alguma outra força além da gravidade simples calculada por Newton.

Dinâmica Newtoniana Modificada
"É uma demonstração impressionante de algo, mas nós não sabemos o que é esse algo," disse o professor James Binney, da Universidade de Oxford, em um comentário para a revista Physics World - Binney não faz parte da equipe que fez as medições. Curiosamente, os dados se encaixam perfeitamente nas previsões do modelo MOND (Modified Newtonian Dynamics, ou Dinâmica Newtoniana Modificada), um modelo elaborado no final do século passado por Mordehai Milgrom para tentar explicar o Universo sem necessidade da hipotética e elusiva matéria escura - até hoje nunca encontrada. Apesar dos protestos de Milgrom, a equipe prefere não afirmar que seus dados validam o modelo MOND, optando por uma terceira via que eles chamam sutilmente de "manter a mente aberta", já que os dados também poderiam ser explicados por modelos teóricos como a "matéria escura superfluida ou mesmo por dinâmicas galácticas complexas".

Viés científico
A equipe justifica sua "sutileza" afirmando que há um preconceito na comunidade astrofísica contra a teoria MOND. "Eu tenho visto uma vez após a outra as pessoas descartando os dados porque eles acham que a MOND está errada, de forma que eu estou conscientemente traçando uma linha vermelha entre a teoria e os dados," disse Stacy McGaugh. De fato, em 2011 o próprio McGaugh já havia liderado um trabalho que também colocava a matéria escura para escanteio e validava a teoria MOND - mas o trabalho acabou virtualmente esquecido. Não é uma discussão que se possa esperar acabar logo e McGauch parece continuar correndo o risco de ver seu trabalho novamente posto de lado. Afinal, há vários projetos em andamento em busca de indícios da matéria escura, cada um deles reunindo centenas de cientistas e com orçamentos de milhões de dólares - e eles não vão simplesmente desistir de seus projetos e de suas verbas simplesmente para dar razão a uma outra teoria.
Fonte: Inovação Tecnológica

24 de out de 2016

Noites nubladas e dias ensolarados nos distante júpiteres quentes

Esta ilustração representa como os Júpiteres quentes de temperaturas diferentes e composições de nuvens diferentes podem aparecer a quem voa por cima do lado diurno destes planetas numa nave espacial, com base em modelos de computador.
Crédito: NASA/JPL-Caltech/Universidade do Arizona/V. Parmentier

A previsão meteorológica para planetas distantes e quentes denominados "Júpiteres quentes" pode ser algo como isto: noites nubladas e dias ensolarados, com uma temperatura máxima de 1300 graus Celsius. Estes mundos misteriosos estão demasiado longe para podermos observar nuvens nas suas atmosferas. Mas um estudo recente usando o Telescópio Espacial Kepler da NASA e técnicas de modelagem por computador encontou pistas de onde essas nuvens se podem reunir e da sua provável composição. O estudo foi publicado na revista The Astrophysical Journal e está disponível online. Os Júpiteres quentes, entre os primeiros dos milhares de exoplanetas (planetas para lá do nosso Sistema Solar) descobertos na nossa Galáxia até agora, orbitam as suas estrelas tão intimamente que estão perpetuamente "torriscados". E enquanto isso pode desencorajar os turistas galácticos, o estudo representa um avanço importante na compreensão da estrutura das atmosferas alienígenas.

Dias intermináveis, noites intermináveis
Os Júpiteres quentes têm bloqueio de marés, o que significa que um lado do planeta está sempre voltado para a estrela e o outro está sempre em escuridão. Na maioria dos casos, o "lado diurno" está largamente livre de nuvens e o "lado noturno" é fortemente nublado, deixando céus parcialmente nublados na zona intermédia. A formação de nuvens é muito diferente da que conhecemos no Sistema Solar," afirma Vivien Parmentier, investigador da Universidade do Arizona, em Tucson, EUA, autor principal do estudo. Um "ano" neste género de planetas pode equivaler a apenas alguns dias terrestres. Num Júpiter quente mais "frio" poderão existir temperaturas de 1300º C. Mas as condições extremas dos Júpiteres quentes trabalham a favor dos cientistas. O contraste da radiação noite-dia é, de facto, fácil de modelar," afirma Parmentier. "[Os Júpiteres quentes] são muito mais fáceis de modelar do que o próprio Júpiter."

Um eclipse, depois "blips"
Os cientistas criaram pela primeira vez uma variedade de Júpiteres quentes e idealizados usando modelos de circulação global - versões mais simples do tipo de modelos computacionais usados para simular o clima da Terra. Em seguida, compararam os modelos com a luz detetada pelo Kepler a partir de Júpiteres quentes reais. O Kepler, que opera agora na sua missão K2, foi construído para registar o extremamente pequeno mergulho na luz estelar quando um planeta passa em frente da sua estrela, evento a que chamamos "trânsito". Mas, neste caso, os cientistas focaram-se nas "curvas de fase" dos planetas, ou mudanças na luz à medida que o planeta passa por fases, como a Lua da Terra.

A combinação dos Júpiteres quentes modelados com as curvas de fase de Júpiteres quentes reais revelou quais as curvas provocadas pelo aquecimento do planeta e quais as curvas provocadas por luz refletida pelas nuvens na atmosfera. Combinando os dados do Kepler com modelos de computador, os cientistas foram capazes de, pela primeira vez, inferir padrões globais de nuvens nestes mundos distantes.

Isto permitiu com que a equipa tirasse conclusões sobre as diferenças do vento e da temperatura nos Júpiteres quentes que estudaram. Pouco antes dos planetas mais quentes passarem por trás das suas estrelas - uma espécie de eclipse - um pequeno "blip" na curva de luz visível do planeta revelou um "ponto quente" no lado oriental do planeta. E em planetas eclipsados mais frios, foi observado um "blip" logo após o planeta surgir novamente do outro lado da estrela, desta vez no lado ocidental do planeta. O "blip" inicial nos mundos mais quentes revela que fortes ventos estavam a empurrar as zonas mais quentes e sem nuvens da atmosfera, normalmente encontradas diretamente sob a sua estrela, para este.

Enquanto isso, em mundos frios, as nuvens agrupam-se e refletem mais luz no lado mais "frio" e ocidental do planeta, dando origem ao "blip" pós-eclipse. Nós estamos a afirmar que o oeste do lado diurno do planeta é mais nublado que o este," explica Parmentier. Embora este padrão intrigante já tenha sido visto antes, esta investigação foi a primeira a estudar todos os Júpiteres quentes que exibem este comportamento. Isto levou a outro marco importante. Ao descobrirem como é que as nuvens estão distribuídas, o que está intimamente ligado com a temperatura global do planeta, os cientistas foram capazes de determinar a provável composição das nuvens.

Basta adicionar manganês, e mexer
Os Júpiteres quentes têm uma temperatura demasiado alta para a existência de nuvens de vapor de água como cá na Terra. Em vez disso, as nuvens desses planetas são provavelmente formadas à medida que os vapores exóticos se condensam para formar minerais, compostos químicos como o óxido de alumínio, ou até metais como ferro. A equipa científica descobriu que as nuvens de sulfeto de manganês provável ente dominam os Júpiteres quentes mais "frios", enquanto as nuvens de silicatos prevalecem a temperaturas mais elevadas. Nesses planetas, os silicatos provavelmente "chovem" para o interior do planeta, desaparecendo da atmosfera observável.

Por outras palavras, a temperatura média de um planeta, que depende da distância à estrela, governa os tipos de nuvens que aí se podem formar. Isto leva a que diferentes planetas formem tipos diferentes de nuvens. A composição das nuvens muda com a temperatura do planeta," comenta Parmentier. "As curvas de luz contam a história da composição das nuvens. É superinteressante, porque a composição das nuvens é, de outra forma, muito difícil de obter."

Os novos resultados também mostram que as nuvens não são distribuídas uniformemente nos Júpiteres quentes, ecoando os resultados anteriores do Telescópio Espacial Spitzer da NASA que sugerem que partes diferentes dos Júpiteres quentes têm temperaturas muito diferentes.

As novas descobertas surgem perto do 21.º aniversário do início da caça aos exoplanetas. No dia 6 de outubro de 1995, uma equipa suíça anunciou a descoberta de 51 Pegasi b, um Júpiter quente que foi o primeiro planeta confirmado em órbita de uma estrela parecida com o Sol. Parmentier e a sua equipa esperam que as suas informações sobre as nuvens nos Júpiteres quentes possam trazer uma compreensão mais detalhada sobre as atmosferas e química dos Júpiteres quentes, um dos principais objetivos dos estudos atmosféricos dos exoplanetas.


Inclinação curiosa do sol atribuida ao planeta nove

Esta impressão de artista mostra o distante Planeta Nove. Pensa-se que o planeta seja gasoso, parecido com Úrano e Neptuno. Relâmpagos hipotéticos iluminam o lado noturno. Crédito: Caltech/R. Hurt (IPAC)

De acordo com um novo estudo, o Planeta Nove - o planeta ainda não descoberto na orla do Sistema Solar que foi previsto pelo trabalho de Konstantin Batygin e Mike Brown em janeiro de 2016 - parece ser responsável pela invulgar inclinação do Sol. O planeta grande e distante pode estar a adicionar uma oscilação ao Sistema Solar, dando a aparência de que o Sol está ligeiramente inclinado. Dado que o Planeta Nove é tão grande e tem uma órbita inclinada em comparação com a dos outros planetas, o Sistema Solar não tem escolha a não ser torcer-se lentamente para fora do alinhamento," comenta Elizabeth Bailey, estudante do Caltech e autora principal de um estudo que anuncia a descoberta.

Todos os planetas orbitam num plano achatado em relação ao Sol (eclíptica), no máximo com cerca de 2º uns dos outros. Esse plano, no entanto, gira a uma inclinação de seis graus em relação ao Sol - dando a aparência de que o próprio Sol está inclinado. Até agora, ninguém tinha encontrado uma explicação convincente para este efeito. "É um mistério tão profundamente enraizado e tão difícil de explicar que as pessoas simplesmente não falam sobre ele," comenta Brown, professor de Astronomia Planetária.

A descoberta de Brown e Batygin, de evidências de que o Sol é orbitado por um planeta ainda não descoberto - com cerca de 10 vezes a massa da Terra e com uma órbita que o leva cerca de 20 vezes mais longe do Sol, em média, que Neptuno - muda a física. O Planeta Nove, com base nos seus cálculos, parece orbitar a 30º do plano orbital dos outros planetas - no processo, influenciando a órbita de uma grande população de objetos na Cintura de Kuiper, que foi como Brown e Batygin vieram a suspeitar da existência de tal planeta em primeiro lugar.

"Continua a surpreender-nos; de cada vez que olhamos com cuidado, continuamos a descobrir que o Planeta Nove explica algo sobre o Sistema Solar que há muito que era um mistério," realça Batygin, professor assistente de ciência planetária. As suas conclusões foram aceites para publicação numa edição futura da revista The Astrophysical Journal e foram apresentadas dia 18 de outubro na reunião anual da Divisão de Ciências Planetárias da Sociedade Astronómica Americana, realizada em Pasadena, no estado norte-americano da Califórnia. A inclinação do plano orbital do Sistema Solar há muito que confunde os astrónomos devido à forma como os planetas se formaram: uma nuvem giratória lentamente colapsou num disco para formar objetos em órbita de uma estrela central.

Com base na sua localização e tamanho, o momento angular do Planeta Nove está a ter um impacto desproporcional no Sistema Solar. O momento angular de um planeta é igual à massa do objeto multiplicada pela sua distância ao Sol, e corresponde à força que o planeta exerce sobre a rotação do sistema global. Dado que os outros planetas do Sistema Solar estão todos praticamente ao longo de um único plano achatado, os seus momentos angulares trabalham em conjunto para manter sem problemas a rotação de toda a eclíptica. A órbita invulgar do Planeta Nove, no entanto, acrescenta uma oscilação de milhares de milhões de anos a esse sistema. Matematicamente, dado o hipotético tamanho e a hipotética distância do Planeta Nove, uma inclinação de seis graus encaixa perfeitamente, comenta Brown.

A próxima questão é, então, como é que o Planeta Nove alcançou a sua órbita invulgar? Isso continua ainda por determinar, mas Batygin sugere que o planeta poderá ter sido expulso da vizinhança dos gigantes gasosos por Júpiter, ou talvez sido influenciado pela atração gravitacional de outros corpos estelares no passado extremo do Sistema Solar. Por agora, Brown e Batygin continuam a trabalhar, com colegas em todo o mundo, à procura de sinais do Planeta Nove ao longo do percurso que previram em janeiro. Essa pesquisa, afirma Brown, poderá levar três anos ou mais.
Fonte: Astronomia Online



20 de out de 2016

Sonda New Horizons se aproxima de misterioso objeto vermelho

A sonda New Horizons da NASA está neste momento acelerando em direção a um objeto misterioso chamado MU69, no Cinturão de Kuiper. Observações recentes do objeto distante indicam uma superfície avermelhada, talvez até mais vermelha que os borrões localizados em Plutão. Este pequeno KBO (Kuiper Belt object) mede entre 30 a 45 km de diâmetro e está a 2,6 bilhões de km de Plutão. Quando New Horizons chegar lá em janeiro de 2019, a sonda estará 43,3 vezes mais distante do Sol do que a Terra está distante do Sol. A sonda se aproximará mais deste objeto do que Plutão quando fez a histórica passagem pelo planeta em 15 de julho de 2015.
A cor avermelhada de MU69, assim como as manchas de Plutão e da sua lua Charon, sugere a presença de tolina, uma classe de moléculas que é formada através da irradiação ultravioleta de componentes simples como o metano e etano. Tonlina não se forma naturalmente na Terra, mas é abundante na superfície de corpos gelados na parte exterior do sistema solar. Com o Hubble, cientistas confirmaram que MU69 faz parte da clássica região gelada do Cinturão de Kuiper, que contém alguns dos mais antigos objetos do sistema solar.
Quanto mais New Horizons avança e encontra objetos incrivelmente distantes da Terra, mais esta missão se assemelha à série Star Trek. Janeiro de 2019 promete novidades interessantes.
Fonte: HypeScience.com
 [Gizmodo]

19 de out de 2016

Possíveis cenários para a vida em outros planetas

Existe a questão da possível existência de vida fora do nosso sistema solar em outro “planeta Terra”, e a medida que a tecnologia avança, mais exoplanetas são descobertos, e mais exoplanetas com características mais próximas da Terra são descobertas. Um exemplo é o Kepler-186f, um exoplaneta que tem água, e outro, é o Kepler-452b, que têm algumas características semelhantes às características da Terra, como um período orbital de aproximadamente 384,84 dias terrestres.  Para ocorrer o surgimento da vida, é preciso um meio líquido (como a água) para ter o surgimento através de reações químicas, moléculas, que são de extrema importância para o isso através de reações químicas incluindo água, e além desses dois fatores, precisa-se de uma fonte de energia. Um grande objetivo da astronomia é encontrar vida em outros planetas, uma tarefa complicada.
Para criar instrumentos que analisem planetas parecidos com a Terra, é preciso se antecipar no tempo e saber como será a química dessa atmosfera, semelhante ao nosso planeta, por isso precisamos de teoria e modelos”, explica Geoffrey Marcy, da Universidade da Califórnia.
    Os astrônomos utilizam vários modelos no estudo de exoplanetas, criando teorias. Modelos utilizando computadores, que são utilizados em estudos criando cenários com base em alguns dados para facilitar os estudos, além disso, teorias são elaboradas. Os astrônomos criam esses modelos com base nas informações obtidas nas observações. Se existirem plantas em exoplanetas que orbitam estrelas de cores azuis, elas absorveriam essa cor e provavelmente refletiriam cores alaranjadas ou amareladas e poderiam ser vermelhas, amarelas ou laranjas, enquanto as plantas que estivessem recebendo luz solar de estrelas fracas (em questão de irradiação) provavelmente teriam colorações escuras, isso porque elas absorveriam o “máximo” de luz que chegasse para elas realizarem a fotossíntese.
 Pode existir vida até mesmo em exoplanetas que orbitam estrelas radioativas, porque se seres vivos ficassem em ambientes aquáticos, escapariam do perigo dessa radiação e receberiam a quantidade suficiente de luz. Os astrônomos estudam os gases com espectroscopia nos estudos astronômicos, porque dessa forma, os astrônomos podem analisar a luz, podendo saber sobre a composição química atmosférica.
   Sabemos que a Zona Habitável é a zona ao redor de uma estrela onde temos temperaturas ideais para ter água em estado líquido, mas o tipo espectral da estrela, o tamanho da estrela, a temperatura da estrela e outros fatores determinam onde se localizará a Zona Habitável de uma estrela. Vale ressaltar que o planeta pode não ser habitável e estar na Zona Habitável. Os astrônomos se interessam pelo fato da existência de água em um exoplaneta, se tiver, terá a possibilidade de ter vida, que é óbvio.
    Levar em consideração o tipo de uma estrela é importante pelo fato de estrelas de tipos espectrais diferentes terem temperaturas e tamanhos diferentes, e um fato interessante é que ao decorrer dos anos, as estrelas mudam de temperatura, e, consequentemente, suas Zonas Habitáveis também “mudam de lugar”.
Na metade do século XX, Drake postulou sua equação, a Equação de Drake, uma equação probabilística, e com isso, foram feitos cálculos. Porém, muitos astrônomos não acreditam que a Equação de Drake é o suficiente, e ele citou diversos fatores que influenciam nas diferentes formas de vidas inteligentes fora de nossa galáxia, abaixando bastante  os resultados obtidos através da Equação de Drake. Um exemplo é o metal, o que toda civilização inteligente precisa, outro fator que deve ser levado em consideração, além de vários outros que não foram levados em consideração.

 Os astrônomos não acreditam apenas que a posição de um exoplaneta no sistema solar seja o suficiente para um exoplaneta ter vida inteligente, como também a posição de um exoplaneta na galáxia, por causa disso que o termo “Zona Habitável Galáctica” passou a ser usado. Essa Zona Habitável é composta por 9 fatores, como, a distância de perigosas estrelas de nêutrons, buracos negros e rajadas de raios Gama. Uma rajada vinda de um magnetar poderia “varrer” a atmosfera terrestre se estivesse a centenas de anos-luz de distância da Terra, porém, como ele está a 20 mil anos-luz de distância da terra, não fomos extintos. Nessa grande liberação de energia, esse magnetar liberou em 0,2 segundos mais energia que o sol emitirá em 100.
Um dos problemas em estudar exoplanetas com mais detalhes é o fato de se estudar exoplanetas a anos-luz de distância de nós e o fato de emitirem pouca luz em relação às estrelas. Uma vantagem do método do trânsito é que pode-se descobrir o tamanho de um exoplaneta com mais facilidade, e precisa-se do período orbital e da temperatura para saber se o exoplaneta  está na Zona Habitável de uma estrela. Com base em alguns cálculos, os astrônomos estimam que o menor dos exoplanetas teriam até 0,33 massas terrestres, enquanto exoplanetas habitáveis teriam que ter o máximo de 10 massas terrestres.
    Um cenário catastrófico seria se um Júpiter quente estivesse no nosso sistema solar, porque se isso acontecesse, ele “arremessaria” a Terra para longe do sol e a vida na Terra seria extinta. O tamanho de um planeta influencia em sua evolução, e o local onde um planeta se localiza também influencia em sua evolução. Estudos sugerem que Vênus talvez teve água líquida para 2 bilhões de anos de sua vida, porém, com a proximidade do sol e o efeito estufa ele perdeu sua água (provavelmente).
Fonte: SPACE TODAY

Imagem de Eta Carinae com maior resolução obtida até à data

O Interferómetro do VLT captura ventos fortes no famoso sistema estelar massivo
Imagem detalhada de Eta Carinae Créditos:
ESO/G. Weigel
Uma equipe internacional de astrónomos utilizou o Interferómetro do Very Large Telescope para obter imagens do sistema estelar de Eta Carinae, as mais detalhadas obtidas até à data. A equipa descobriu estruturas novas e inesperadas no sistema binário, incluindo uma região entre as duas estrelas onde ventos estelares de velocidades extremamente elevadas colidem. Esta nova descoberta sobre o enigmático sistema estelar poderá levar a uma melhor compreensão da evolução de estrelas de elevada massa. Uma equipe de astrónomos, liderada por Gerd Weigelt do Instituto Max Planck de Rádio Asttronomia (MPIfR) em Bona, na Alemanha, utilizou o Interferómetro do Very Large Telescope (VLTI), instalado no Observatório do Paranal do ESO, para obter uma imagem única do sistema estelar Eta Carinae situado na Nebulosa Carina.

Este colossal sistema binário, constituído por duas estrelas massivas que orbitam em torno uma da outra, é muito ativo, dando origem a ventos estelares com velocidades que vão até 10 milhões de km por hora
[1]. A região entre as duas estrelas, onde os ventos de ambas colidem, é muito turbulenta, mas até agora não se tinha ainda conseguido estudar. O poder do binário Eta Carinae cria fenómenos dramáticos. Astrónomos dos anos 1830 observaram uma “Grande Erupção” no sistema. Sabemos agora que esta erupção ocorreu quando a maior das estrelas do binário libertou enormes quantidades de gás e poeira num curto período de tempo, o que levou à formação dos lóbulos distintos, conhecidos por Nebulosa Homunculus, que vemos atualmente no sistema.

O efeito combinado dos dois ventos estelares a chocarem um contra o outro a velocidades extremas faz com que as temperaturas na região aumentem para milhões de graus e ocorram intensos “dilúvios” de raios X. A área central onde os ventos colidem é relativamente pequena — mil vezes menor que a Nebulosa Homunculus — razão pela qual os telescópios colocados tanto no espaço como no solo não tinham ainda conseguido obter uma imagem detalhada da região. A equipa utilizou o poder resolvente do instrumento AMBER do VLTI para observar este reino violento pela primeira vez. Uma combinação inteligente — um interferómetro — de três dos quatro Telescópios Auxiliares do VLT fez aumentar em 10 vezes o poder resolvente, relativamente a um único Telescópio Principal do VLT.

Conseguiu-se assim obter a imagem mais nítida de sempre do sistema, o que levou à obtenção de resultados inesperados sobre a sua estrutura interna. A nova imagem VLTI mostra claramente a estrutura que existe entre as duas estrelas Eta Carinae. Foi observada uma inesperada forma em ventoinha na região onde o vento da estrela mais pequena e mais quente colide com o vento mais denso da estrela maior. Os nossos sonhos tornaram-se realidade, porque agora conseguimos obter imagens extremamente nítidas no infravermelho. O VLTI dá-nos a oportunidade única de aumentar o nosso conhecimento sobre Eta Carinae e sobre muitos outros objetos chave”, diz Gerd Weigelt.

Para além das imagens, observações espectroscópicas da zona de colisão permitiram medir as velocidades dos intensos ventos estelares
. Com estes valores, foi possível criar modelos de computador mais precisos da estrutura interna deste sistema estelar, o que nos ajudará a compreender como é que estas estrelas de massas extremamente elevadas perdem massa à medida que evoluem. Um dos membros da equipa, Dieter Schertl (MPIfR), olha para o futuro:” Os novos instrumentos
GRAVITY e MATISSE do VLTI permitir-nos-ão obter imagens interferométricas com ainda mais precisão e num intervalo de comprimentos de onda ainda maior. É necessário um vasto intervalo de comprimentos de onda para se poder derivar as propriedades físicas de muitos objetos astronómicos.”
Fonte: ESO


Aglomerado estelar NGC 299 na constelação do Tucano

A constelação do Tucano é famosa por abrigar alguns dos objetos mais interessantes de serem observados como a Galáxia Anã Tucana e o aglomerado globular 47 Tucanae, o segundo aglomerado mais brilhante do céu. Mas além disso, essa constelação nos reserva outra belezas cósmicas. Uma dessas é o aglomerado aberto de estrelas NGC 299, localizado dentro da Pequena Nuvem de Magalhães a apenas 200 000 anos-luz de distância da Terra. Aglomerados abertos de estrelas como esse, são coleções de estrelas fracamente agrupadas pela gravidade, todas elas tendo se formado da mesma nuvem molecular massiva de gás e poeira. Por conta disso, todas as estrelas possuem a mesma composição e a mesma idade, mas possuem massa variável pois elas se formarm em diferentes posições dentro da nuvem. Essa única propriedade, não só garante uma espetacular visão quando o objeto é observado através de instrumentos sofisticados acoplados a telescópios como a Advanced Camera for Surveys do Hubble, mas também fornece aos astrônomos um laboratório cósmico onde é possível estudar a formação e a evolução das estrelas, um processo que acredita-se, depende fortemente da massa da estrela.

18 de out de 2016

O aglomerado globular de estrelas 47 Tuc

O Aglomerado Globular 47 Tucanae é uma joia do céu do sul. Também conhecido como NGC 104, ele se localiza no halo da Via Láctea, juntamente com outros 200 aglomerados globulares de estrelas. Ele é o segundo aglomerado globular mais brilhante (depois de Omega Centauri) e localiza-se a 13000 anos-luz de distância da Terra e pode ser até mesmo visto a olho nu próximo à Pequena nuvem de Magalhães na constelação de Toucan. O denso aglomerado é formado por algumas milhões de estrelas concentradas em um volume de aproximadamente 120 anos-luz. Estrelas gigantes vermelhas na parte mais externa do aglomerado são facilmente identificadas como estrelas amareladas nessa imagem do aglomerado feita por meio de um telescópio. O aglomerado globular 47 Tucanae também é o lar de exóticos sistemas estelares binários que são fontes de raios-X.
Fonte: NASA

Proxima Centauri pode ser mais parecida com o Sol do que se pensava

Impressão de artista que mostra o interior de uma estrela de baixa massa. Estas estrelas têm estruturas interiores diferentes do nosso Sol, de modo que não se esperava que tivessem ciclos de atividade magnética. No entanto, os astrónomos descobriram que a estrela vizinha Proxima Centauri desafia essa expetativa e mostra sinais de um ciclo de atividade com a duração de 7 anos. Crédito: NASA/CXC/M. Weiss

Em agosto os astrónomos anunciaram que a estrela vizinha, Proxima Centauri, hospeda um planeta do tamanho da Terra (de nome Proxima b) na sua zona habitável. À primeira vista, Proxima Centauri não se parece nada com o nosso Sol. É uma pequena e fria anã vermelha com apenas um décimo da massa e um milésimo do brilho do Sol. No entanto, uma nova investigação mostra que é parecida com o Sol de uma forma surpreendente: tem um ciclo regular de manchas estelares.

As manchas estelares (como as manchas solares) são zonas escuras à superfície de uma estrela onde a temperatura é um pouco inferior à da área circundante. São alimentadas por campos magnéticos. Uma estrela é constituída por gases ionizados a que chamamos plasma. Os campos magnéticos podem restringir o fluxo de plasma e criar manchas. As alterações ao campo magnético de uma estrela podem afetar o número e a distribuição das manchas estelares.

O nosso Sol tem um ciclo de atividade de 11 anos. Durante o mínimo solar, o Sol não tem quase manchas nenhumas. Durante o máximo solar, normalmente mais de 100 manchas solares cobrem, em média, menos de 1% da superfície do Sol. O novo estudo descobriu que Proxima Centauri é submetida a um ciclo semelhante com a duração de sete anos de pico a pico. No entanto, o seu ciclo é muito mais dramático. Pelo menos um-quinto da superfície da estrela fica coberta por manchas de uma só vez. Além disso, algumas destas manchas são muito maiores em relação ao tamanho da estrela do que as manchas do nosso Sol.

"Se houvesse vida inteligente em Proxima b, teriam uma vista muito dramática," afirma o autor principal Brad Wargelin do Centro Harvard-Smithsonian para Astrofísica. Os astrónomos ficaram surpreendidos ao detetar o ciclo de atividade estelar em Proxima Centauri porque o seu interior deverá ser muito diferente do interior do Sol. O terço exterior do Sol sofre um movimento chamado convecção, parecido com a água a ferver numa panela, enquanto o interior do Sol permanece relativamente imóvel. Há uma diferença na velocidade de rotação entre estas duas regiões. Muitos astrónomos acham que esta diferenciação é responsável pela produção do ciclo de atividade magnética do Sol.

Em contraste, o interior de uma pequena anã vermelha como Proxima Centauri deve ser totalmente convectivo até ao núcleo. Como resultado, não deveria ter um ciclo regular de atividade. A existência de um ciclo em Proxima Centauri mostra que nós não entendemos a produção dos campos magnéticos estelares tão bem quanto pensávamos," afirma o coautor Jeremy Drake, do Smithsonian. O estudo não aborda se o ciclo de atividade de Proxima Centauri afetaria a potencial habitabilidade do planeta Proxima b.

A teoria sugere que as proeminências ou o vento estelar, ambos alimentados por campos magnéticos, podem colidir com o planeta e expulsar qualquer atmosfera. Nesse caso, Proxima b seria mais como a Lua da Terra - localizado na zona habitável, mas nada amigável à vida.

"As observações diretas de Proxima b não vão acontecer durante muito tempo. Até lá, a nossa melhor aposta é estudar a estrela e, em seguida, ligar essa informação com as teorias sobre as interações estrela-planeta," afirma o coautor Steve Saar. A equipe detetou o ciclo de atividade usando observações terrestres do ASAS (All Sky Automated Survey), combinadas com medições espaciais obtidas por várias missões, incluindo o Swift, Chandra e XMM-Newton. Os seus resultados foram aceites para publicação na revista Monthly Notices of the Royal Astronomical Society e estão disponíveis online.
Fonte: Astronomia Online



17 de out de 2016

O universo contém ao menos DEZ VEZES mais galáxias do que pensávamos

Astrônomos usando dados das agências espaciais americana NASA e europeia ESA realizaram um censo preciso do número de galáxias no universo observável, concluindo surpreendentemente que existem pelo menos dez vezes mais do que pensávamos. Os resultados têm implicações claras para a nossa compreensão da formação de galáxias, e também ajudam a resolver um antigo mistério astronômico: por que o céu é escuro à noite?

Modelo matemático - Imagens do Hubble Deep Field, capturadas pelo telescópio Hubble em meados de 1990, deram a primeira visão sobre quantas galáxias haviam no universo. Estimou-se que o número era de cerca de 100 bilhões. Agora, uma equipe internacional liderada por Christopher Conselice da Universidade de Nottingham, no Reino Unido, demonstrou que este número pode ser pelo menos dez vezes maior. Conselice e sua equipe chegaram a esta conclusão utilizando imagens do Hubble, dados de trabalhos anteriores dos pesquisadores e outros dados publicados. Eles meticulosamente converteram as imagens em 3D, a fim de fazer medições precisas do número de galáxias em diferentes épocas da história do universo. Além disso, eles usaram novos modelos matemáticos que lhes permitiram inferir a existência de galáxias que a atual geração de telescópios não pode observar. Isto levou à surpreendente conclusão de que cerca de 90% das galáxias no universo observável são realmente muito fracas e estão longe demais para serem vistas.

Galáxias fracas - Ao analisar os dados, a equipe estudou galáxias mais de 13 bilhões de anos no passado. Isto lhes mostrou que elas não são distribuídas uniformemente ao longo da história do universo. Na verdade, parece que houve um fator de mais dez galáxias por unidade de volume quando o universo tinha apenas alguns bilhões de anos em comparação com hoje. A maioria destas galáxias eram relativamente pequenas e fracas, com massas semelhantes às de galáxias satélites em torno da Via Láctea. Estes resultados são uma poderosa evidência de que uma evolução significativa ocorreu ao longo da história do universo, durante a qual as galáxias se fundiram, reduzindo drasticamente o seu número total.

Por que a noite é escura - A diminuição do número de galáxias também contribui para a solução do paradoxo de Olbers, ou paradoxo da noite escura, sobre por que o céu é escuro à noite. A equipe chegou à conclusão de que há tal abundância de galáxias que, em princípio, cada ponto no céu contém parte de uma galáxia. No entanto, a maioria destas galáxias são invisíveis para o olho humano e até para os telescópios modernos, devido a uma combinação de fatores: o desvio para o vermelho de luz, a natureza dinâmica do universo e a absorção de luz pela poeira intergaláctica e gás, que combinam-se para garantir que o céu noturno permaneça predominantemente escuro.
Fonte: Hypescience.com
[Phys]

A bela e Intrigante Galáxia NGC 278

Essa imagem, feita com a Wide Field Planetary Camera 2 do Telescópio Espacial Hubble, mostra a galáxia espiral chamada NGC 278. Essa beleza cósmica localiza-se a cerca de 38 milhões de anos-luz de distância da Terra na constelação de Cassiopeia. Olhando assim, a galáxia NGC 278, parece tranquila. Porém, a galáxia está passando por uma imensa explosão de formação de estrelas. Essa atividade furiosa pode ser percebida pelos nós de tonalidade azulada, que permeiam os braços espirais da galáxia, cada nó desse marca uma aglomeração de estrelas quentes recém-nascidas.

Contudo, a formação de estrelas na NGC 278 não é comum, ela não se estende para as bordas mais externas da galáxia, só acontecendo dentro de um anel interno de cerca de 6500 anos-luz de diâmetro. Essa dicotomia pode ser vista nessa imagem, enquanto o centro é brilhante, as extremidades são muito mais escuras.

Essa estranha configuração acredita-se, tenha sido causada por uma fusão com uma galáxia menor rica em gás, enquanto que o evento turbulento deu ligou o centro da NGC 278, a poeira remanescente da pequena galáxia desapareceu nas regiões mais externas da galáxia. Qualquer que seja a causa, esse anel de formação de estrela, chamado de anel nuclear, é extremamente incomum em galáxias sem uma barra no seu centro, fazendo da NGC 278 uma galáxia muito intrigante para ser estudada.
Fonte: http://www.spacetelescope.org

O coração antigo da Via Láctea

VISTA encontra restos de enxame estelar globular arcaico
Com o auxílio do VISTA, o telescópio infravermelho do ESO, descobriram-se pela primeira vez estrelas antigas do tipo RR Lyrae no centro da Via Láctea. As estrelas RR Lyrae encontram-se tipicamente em populações estelares com mais de 10 mil milhões de anos de idade. A sua descoberta sugere que o centro bojudo da Via Láctea provavelmente se formou a partir da fusão de enxames estelares primordiais. Estas estrelas podem mesmo ser os restos do mais massivo e mais antigo enxame estelar que ainda sobrevive na Via Láctea.

Uma equipa liderada por Dante Minniti (Universidad Andres Bello, Santiago, Chile) e Rodrigo Contreras (Pontificia Universidad Católica de Chile, Santiago, Chile) utilizou observações do telescópio infravermelho de rastreio VISTA, obtidas no âmbito do rastreio público Variáveis na Via Láctea (VVV), para fazer uma busca cuidada da região central da Via Láctea. Ao observar no infravermelho, que é menos afectado pela poeira cósmica do que a radiação visível, e explorando as excelentes condições de observação do Observatório do Paranal do ESO, a equipa conseguiu obter a visão mais clara desta região conseguida até à data. Foram encontradas uma dúzia de estrelas RR Lyrae antigas no coração da Via Láctea, as quais se desconheciam anteriormente.

A nossa Galáxia tem um centro densamente populado — uma característica comum a muitas galáxias, mas única no sentido em que nos encontramos suficientemente perto para o podermos estudar em profundidade. A descoberta de estrelas RR Lyrae fornece-nos evidências sólidas que ajudam os astrónomos a decidir entre duas teorias principais que competem para explicar a formação destes
bojos. As estrelas RR Lyrae encontram-se tipicamente em enxames globulares densos. Tratam-se de estrelas variáveis, sendo que o brilho de cada estrela RR Lyrae varia de forma regular. Ao observar o tamanho de cada ciclo de aumento e diminuição de brilho numa RR Lyrae, e medindo o brilho da estrela, os astrónomos podem calcular a distância a que a estrela se encontra.

Infelizmente, estas estrelas excelentes indicadoras de distância encontram-se frequentemente ofuscadas por estrelas jovens muito mais brilhantes e em algumas regiões estão escondidas pela poeira. Por isso, localizar estrelas RR Lyrae mesmo no coração extremamente denso da Via Láctea não tinha sido possível antes da obtenção de dados pelo rastreio público VVV levado a cabo no infravermelho. Ainda assim, a equipa descreveu a tarefa de localizar as estrelas RR Lyrae entre a enorme população de estrelas mais brilhantes situadas no centro da Via Láctea como extremamente difícil.

O seu trabalho árduo foi no entanto recompensado com a identificação de uma dúzia de estrelas RR Lyrae. A sua descoberta indica que restos de enxames globulares antigos se encontram espalhados no centro do bojo da Via Láctea. Rodrigo Contreras explica: “A descoberta de estrelas RR Lyrae no centro da Via Láctea tem implicações importantes na formação de núcleos galácticos. As evidências apoiam o cenário em que o bojo foi originalmente formado pela fusão de alguns enxames globulares.”

A teoria de que os bojos galácticos se formam através da fusão de enxames globulares é contestada pela hipótese concorrente de que estes bojos se formam devido à rápida acreção de gás. A descoberta destas estrelas RR Lyrae — quase sempre encontradas em enxames globulares — é uma forte evidência de que o bojo da Via Láctea se formou de facto através de fusão. Extrapolando, outros bojos galácticos semelhantes podem também ter-se formado do mesmo modo. Estas estrelas, para além de constituírem uma forte evidência para uma importante teoria de evolução galáctica, têm também muito provavelmente mais de 10 mil milhões de anos de idade — as  sobreviventes ténues de, possivelmente, o mais antigo e massivo enxame estelar da Via Láctea.
Fonte: ESO

13 de out de 2016

Conheça o novo planeta anão do nosso Sistema Solar

2014 UZ224 é o novo planeta anão do nosso Sistema Solar anunciado por cientistas de Michigan ontem (11). O planeta anão está além da órbita de Plutão, mede cerca de 530 quilômetros de largura e está localizado a 13,7 bilhões de quilômetros do nosso Sol. Os cientistas apontam que um dia no planeta anão demora cerca de 1100 anos terrestres. O objeto foi confirmado pelo Minor Planet Center e foi descoberto por acaso enquanto os cientistas faziam pesquisas utilizando a Câmera de Energia Escura (Decam). O Decam foi construído para observar galáxias e seus movimentos e, futuramente, ajudar a elucidar a origem da matéria escura e sua disposição pelo Universo.

O Decam está sendo utilizado no projeto Dark Energy Survey e, durante a sua geração de imagens, descobre alguns objetos ainda não identificados. Pequenas manchas apareciam de forma regular em algumas imagens tiradas ao longo de alguns meses apresentando um comportamento diferente de estrelas e galáxias. David Gerdes, professor de Astronomia da Universidade de Michigan, ficou interessado e tais manchas e pediu para que seus alunos trabalhassem para investigar e descobrir o que seriam. Um software de computador foi desenvolvido para trabalhar em cima das imagens feitas e sinalizar possíveis objetos em movimento.

Em 2014, a existência deste planeta anão foi ponderada e ele foi confirmado dois anos depois. Algumas de suas características como composição e órbita ainda não são muito claras, mas todos os resultados apontam para a confirmação de sua existência. 2014 UZ224 tornou-se o terceiro objeto mais distante do nosso Sistema Solar. Gerdes admite que as características de 2014 UZZ224 não condizem para que ele seja classificado como planeta anão uma vez que ele é até menor do que o menor planeta anão do nosso sistema – Ceres. Quem decidirá será a União Astronômica Internacional (a mesma que, polemicamente, rebaixou Plutão para a classificação de anão). Mesmo assim, este novo corpo celeste já ganhou a definição de planeta anão de forma carinhosa por estudantes e astrônomos. É mais um mundo com novas possibilidades e descobertas.
Fonte: SPACE TODAY

11 de out de 2016

SOFIA detecta colapsos de nuvens interestelares

Os astrônomos utilizaram o SOFIA para observarem parcelas de 6  nuvens interestelares, cujo caminho é se tornarem estrelas muito maiores que o nosso sol. Quando uma estrela entra em colapso, sua gravidade faz ela se contrair a ponto do atrito gerar calor, desencadeando na fusão de hidrogênio, e depois, uma estrela é formada.  Os astrônomos se animaram com as observações do SOFIA porque elas confirmaram  modelos teóricos de formações de estrelas com o colapso de nuvens interestelares e o ritmo desse colapso. Um problema de estudar esses colapsos é o fato de ser rápido em questões astronômicas, por isso, o “Infall” (nome desse fenômeno) é desafiador, dificultando os estudos.  Utilizando um instrumento do observatório German Receiver for Astronomy at Terahertz Frequencies (GREAT), os cientistas observaram 9 proto-estrelas procurando por esse estágio de desenvolvimento realizando medições, e descobriram que 6 de 9 dessas estrelas foram colapsadas ativamente. O SOFIA é muito importante nas observações relacionadas às formações de estrelas, estudando formações de estrelas com massa elevada no interior da Via Láctea, já que são eventos relativamente rápidos.
Fonte: NASA

Related Posts Plugin for WordPress, Blogger...