19 de out de 2016

Possíveis cenários para a vida em outros planetas

Existe a questão da possível existência de vida fora do nosso sistema solar em outro “planeta Terra”, e a medida que a tecnologia avança, mais exoplanetas são descobertos, e mais exoplanetas com características mais próximas da Terra são descobertas. Um exemplo é o Kepler-186f, um exoplaneta que tem água, e outro, é o Kepler-452b, que têm algumas características semelhantes às características da Terra, como um período orbital de aproximadamente 384,84 dias terrestres.  Para ocorrer o surgimento da vida, é preciso um meio líquido (como a água) para ter o surgimento através de reações químicas, moléculas, que são de extrema importância para o isso através de reações químicas incluindo água, e além desses dois fatores, precisa-se de uma fonte de energia. Um grande objetivo da astronomia é encontrar vida em outros planetas, uma tarefa complicada.
Para criar instrumentos que analisem planetas parecidos com a Terra, é preciso se antecipar no tempo e saber como será a química dessa atmosfera, semelhante ao nosso planeta, por isso precisamos de teoria e modelos”, explica Geoffrey Marcy, da Universidade da Califórnia.
    Os astrônomos utilizam vários modelos no estudo de exoplanetas, criando teorias. Modelos utilizando computadores, que são utilizados em estudos criando cenários com base em alguns dados para facilitar os estudos, além disso, teorias são elaboradas. Os astrônomos criam esses modelos com base nas informações obtidas nas observações. Se existirem plantas em exoplanetas que orbitam estrelas de cores azuis, elas absorveriam essa cor e provavelmente refletiriam cores alaranjadas ou amareladas e poderiam ser vermelhas, amarelas ou laranjas, enquanto as plantas que estivessem recebendo luz solar de estrelas fracas (em questão de irradiação) provavelmente teriam colorações escuras, isso porque elas absorveriam o “máximo” de luz que chegasse para elas realizarem a fotossíntese.
 Pode existir vida até mesmo em exoplanetas que orbitam estrelas radioativas, porque se seres vivos ficassem em ambientes aquáticos, escapariam do perigo dessa radiação e receberiam a quantidade suficiente de luz. Os astrônomos estudam os gases com espectroscopia nos estudos astronômicos, porque dessa forma, os astrônomos podem analisar a luz, podendo saber sobre a composição química atmosférica.
   Sabemos que a Zona Habitável é a zona ao redor de uma estrela onde temos temperaturas ideais para ter água em estado líquido, mas o tipo espectral da estrela, o tamanho da estrela, a temperatura da estrela e outros fatores determinam onde se localizará a Zona Habitável de uma estrela. Vale ressaltar que o planeta pode não ser habitável e estar na Zona Habitável. Os astrônomos se interessam pelo fato da existência de água em um exoplaneta, se tiver, terá a possibilidade de ter vida, que é óbvio.
    Levar em consideração o tipo de uma estrela é importante pelo fato de estrelas de tipos espectrais diferentes terem temperaturas e tamanhos diferentes, e um fato interessante é que ao decorrer dos anos, as estrelas mudam de temperatura, e, consequentemente, suas Zonas Habitáveis também “mudam de lugar”.
Na metade do século XX, Drake postulou sua equação, a Equação de Drake, uma equação probabilística, e com isso, foram feitos cálculos. Porém, muitos astrônomos não acreditam que a Equação de Drake é o suficiente, e ele citou diversos fatores que influenciam nas diferentes formas de vidas inteligentes fora de nossa galáxia, abaixando bastante  os resultados obtidos através da Equação de Drake. Um exemplo é o metal, o que toda civilização inteligente precisa, outro fator que deve ser levado em consideração, além de vários outros que não foram levados em consideração.

 Os astrônomos não acreditam apenas que a posição de um exoplaneta no sistema solar seja o suficiente para um exoplaneta ter vida inteligente, como também a posição de um exoplaneta na galáxia, por causa disso que o termo “Zona Habitável Galáctica” passou a ser usado. Essa Zona Habitável é composta por 9 fatores, como, a distância de perigosas estrelas de nêutrons, buracos negros e rajadas de raios Gama. Uma rajada vinda de um magnetar poderia “varrer” a atmosfera terrestre se estivesse a centenas de anos-luz de distância da Terra, porém, como ele está a 20 mil anos-luz de distância da terra, não fomos extintos. Nessa grande liberação de energia, esse magnetar liberou em 0,2 segundos mais energia que o sol emitirá em 100.
Um dos problemas em estudar exoplanetas com mais detalhes é o fato de se estudar exoplanetas a anos-luz de distância de nós e o fato de emitirem pouca luz em relação às estrelas. Uma vantagem do método do trânsito é que pode-se descobrir o tamanho de um exoplaneta com mais facilidade, e precisa-se do período orbital e da temperatura para saber se o exoplaneta  está na Zona Habitável de uma estrela. Com base em alguns cálculos, os astrônomos estimam que o menor dos exoplanetas teriam até 0,33 massas terrestres, enquanto exoplanetas habitáveis teriam que ter o máximo de 10 massas terrestres.
    Um cenário catastrófico seria se um Júpiter quente estivesse no nosso sistema solar, porque se isso acontecesse, ele “arremessaria” a Terra para longe do sol e a vida na Terra seria extinta. O tamanho de um planeta influencia em sua evolução, e o local onde um planeta se localiza também influencia em sua evolução. Estudos sugerem que Vênus talvez teve água líquida para 2 bilhões de anos de sua vida, porém, com a proximidade do sol e o efeito estufa ele perdeu sua água (provavelmente).
Fonte: SPACE TODAY

Imagem de Eta Carinae com maior resolução obtida até à data

O Interferómetro do VLT captura ventos fortes no famoso sistema estelar massivo
Imagem detalhada de Eta Carinae Créditos:
ESO/G. Weigel
Uma equipe internacional de astrónomos utilizou o Interferómetro do Very Large Telescope para obter imagens do sistema estelar de Eta Carinae, as mais detalhadas obtidas até à data. A equipa descobriu estruturas novas e inesperadas no sistema binário, incluindo uma região entre as duas estrelas onde ventos estelares de velocidades extremamente elevadas colidem. Esta nova descoberta sobre o enigmático sistema estelar poderá levar a uma melhor compreensão da evolução de estrelas de elevada massa. Uma equipe de astrónomos, liderada por Gerd Weigelt do Instituto Max Planck de Rádio Asttronomia (MPIfR) em Bona, na Alemanha, utilizou o Interferómetro do Very Large Telescope (VLTI), instalado no Observatório do Paranal do ESO, para obter uma imagem única do sistema estelar Eta Carinae situado na Nebulosa Carina.

Este colossal sistema binário, constituído por duas estrelas massivas que orbitam em torno uma da outra, é muito ativo, dando origem a ventos estelares com velocidades que vão até 10 milhões de km por hora
[1]. A região entre as duas estrelas, onde os ventos de ambas colidem, é muito turbulenta, mas até agora não se tinha ainda conseguido estudar. O poder do binário Eta Carinae cria fenómenos dramáticos. Astrónomos dos anos 1830 observaram uma “Grande Erupção” no sistema. Sabemos agora que esta erupção ocorreu quando a maior das estrelas do binário libertou enormes quantidades de gás e poeira num curto período de tempo, o que levou à formação dos lóbulos distintos, conhecidos por Nebulosa Homunculus, que vemos atualmente no sistema.

O efeito combinado dos dois ventos estelares a chocarem um contra o outro a velocidades extremas faz com que as temperaturas na região aumentem para milhões de graus e ocorram intensos “dilúvios” de raios X. A área central onde os ventos colidem é relativamente pequena — mil vezes menor que a Nebulosa Homunculus — razão pela qual os telescópios colocados tanto no espaço como no solo não tinham ainda conseguido obter uma imagem detalhada da região. A equipa utilizou o poder resolvente do instrumento AMBER do VLTI para observar este reino violento pela primeira vez. Uma combinação inteligente — um interferómetro — de três dos quatro Telescópios Auxiliares do VLT fez aumentar em 10 vezes o poder resolvente, relativamente a um único Telescópio Principal do VLT.

Conseguiu-se assim obter a imagem mais nítida de sempre do sistema, o que levou à obtenção de resultados inesperados sobre a sua estrutura interna. A nova imagem VLTI mostra claramente a estrutura que existe entre as duas estrelas Eta Carinae. Foi observada uma inesperada forma em ventoinha na região onde o vento da estrela mais pequena e mais quente colide com o vento mais denso da estrela maior. Os nossos sonhos tornaram-se realidade, porque agora conseguimos obter imagens extremamente nítidas no infravermelho. O VLTI dá-nos a oportunidade única de aumentar o nosso conhecimento sobre Eta Carinae e sobre muitos outros objetos chave”, diz Gerd Weigelt.

Para além das imagens, observações espectroscópicas da zona de colisão permitiram medir as velocidades dos intensos ventos estelares
. Com estes valores, foi possível criar modelos de computador mais precisos da estrutura interna deste sistema estelar, o que nos ajudará a compreender como é que estas estrelas de massas extremamente elevadas perdem massa à medida que evoluem. Um dos membros da equipa, Dieter Schertl (MPIfR), olha para o futuro:” Os novos instrumentos
GRAVITY e MATISSE do VLTI permitir-nos-ão obter imagens interferométricas com ainda mais precisão e num intervalo de comprimentos de onda ainda maior. É necessário um vasto intervalo de comprimentos de onda para se poder derivar as propriedades físicas de muitos objetos astronómicos.”
Fonte: ESO


Aglomerado estelar NGC 299 na constelação do Tucano

A constelação do Tucano é famosa por abrigar alguns dos objetos mais interessantes de serem observados como a Galáxia Anã Tucana e o aglomerado globular 47 Tucanae, o segundo aglomerado mais brilhante do céu. Mas além disso, essa constelação nos reserva outra belezas cósmicas. Uma dessas é o aglomerado aberto de estrelas NGC 299, localizado dentro da Pequena Nuvem de Magalhães a apenas 200 000 anos-luz de distância da Terra. Aglomerados abertos de estrelas como esse, são coleções de estrelas fracamente agrupadas pela gravidade, todas elas tendo se formado da mesma nuvem molecular massiva de gás e poeira. Por conta disso, todas as estrelas possuem a mesma composição e a mesma idade, mas possuem massa variável pois elas se formarm em diferentes posições dentro da nuvem. Essa única propriedade, não só garante uma espetacular visão quando o objeto é observado através de instrumentos sofisticados acoplados a telescópios como a Advanced Camera for Surveys do Hubble, mas também fornece aos astrônomos um laboratório cósmico onde é possível estudar a formação e a evolução das estrelas, um processo que acredita-se, depende fortemente da massa da estrela.

Related Posts Plugin for WordPress, Blogger...