30 de nov de 2016

Primeiros sinais de estranha propriedade quântica do espaço vazio?

Observações VLT de estrela de neutrões podem confirmar previsão com 80 anos sobre o vácuo
Esta conceção artística mostra como é que a radiação emitida pela superfície de uma estrela de neutrões fortemente magnetizada (à esquerda) se polariza linearmente à medida que viaja através do vácuo do espaço que envolve a estrela no seu percurso até chegar à Terra (à direita). A polarização da radiação observada no campo magnético extremamente forte sugere que o espaço vazio que rodeia a estrela de neutrões está sujeito a um efeito quântico chamado birrefringência do vácuo, uma previsão da electrodinâmica quântica. Este efeito foi previsto nos anos 1930 mas nunca foi observado até agora. As direcções dos campos magnético e eléctrico estão marcadas com linhas vermelhas e azuis. Simulações de modelos obtidas por Roberto Taverna (Universidade de Pádua, Itália) e Denis Gonzalez Caniulef (UCL/MSSL, RU) mostram como estas se alinham ao longo de uma direção preferencial quando a radiação passa pela região em torno da estrela de neutrões.Créditos:ESO/L. Calçada

Ao estudar com o Very Large Telescope do ESO a radiação emitida por uma estrela de neutrões muito densa e fortemente magnetizada, os astrónomos descobriram as primeiras indicações observacionais de um estranho efeito quântico, previsto inicialmente nos anos 1930. A polarização da radiação observada sugere que o espaço vazio em torno da estrela de neutrões está sujeito a um efeito quântico conhecido por birrefringência do vácuo. Uma equipa liderada por Roberto Mignani do INAF de Milão, Itália, e da Universidade de Zielona Gora, Polónia, utilizou o Very Large Telescope do ESO (VLT), instalado no Observatório do Paranal no Chile, para observar a estrela de neutrões RX J1856.5-3754, situada a cerca de 400 anos-luz de distância da Terra.
Apesar de ser uma das estrelas de neutrões mais próximas de nós, a luminosidade muito baixa deste objeto faz com que os astrónomos apenas a possam observar no visível com o instrumento
FORS2 montado no VLT, nos limites da atual tecnologia de telescópios. As estrelas de neutrões são restos de núcleos muito densos de estrelas massivas — pelo menos 10 vezes mais massivas que o Sol — que explodiram sob a forma de supernovas no final das suas vidas. Possuem igualmente campos magnéticos intensos, milhares de milhões de vezes mais fortes que o do nosso Sol, que permeiam as suas superfícies exteriores e seus arredores.
Estes campos magnéticos são tão fortes que afectam inclusivamente as propriedades do espaço vazio que circunda a estrela. Normalmente, o vácuo sugere-nos um espaço completamente vazio, onde a radiação viaja sem ser modificada. No entanto, em electrodinâmica quântica — a teoria do vácuo que descreve a interação entre fotões de luz e partículas carregadas, tais como electrões — o espaço encontra-se repleto de partículas virtuais que aparecem e desaparecem a todo o momento. Campos magnéticos muito intensos podem modificar este espaço, de tal maneira que este afecta a polarização da radiação que passa através dele.
Mignani explica: “De acordo com a electrodinâmica quântica, um vácuo altamente magnetizado comporta-se como um prisma no que diz respeito  à propagação da radiação, um efeito conhecido por birrefringência do vácuo. Entre as muitas previsões da electrodinâmica quântica, a birrefringência do vácuo não teve ainda uma demonstração experimental. Tentativas de detectar este efeito em laboratório não deram qualquer resultado nos 80 anos que passaram desde a publicação do artigo científico de Werner Heisenberg (famoso pelo princípio de incerteza) e Hans Heinrich Euler.
“Este efeito pode ser apenas detectado na presença de campos magnéticos extremamente fortes, tais como os existentes em torno de estrelas de neutrões, o que mostra, uma vez mais, como as estrelas de neutrões são laboratórios valiosos para o estudo das leis fundamentais da natureza,” diz Roberto Turolla (Universidade de Pádua, Itália).
Após análise cuidada dos dados VLT, Mignani e a sua equipa detectaram polarização linear — com um grau significativo de cerca de 16% — que pensam ser provavelmente devida ao efeito de birrefringência do vácuo a ocorrer no espaço vazio que rodeia a RX J1856.5-3754. Vincenzo Testa (INAF, Roma, Itália) comenta: “Até à data, este é o objeto mais ténue para o qual foi medido um valor de polarização. Foi necessário utilizar um dos maiores e mais eficientes telescópios do mundo, o VLT, e técnicas de análise de dados precisas para aumentar o sinal emitido por uma estrela tão fraca.”
“A alta polarização linear que medimos com o VLT não pode ser explicada facilmente pelos nossos modelos, a menos que incluamos o efeito de birrefringência do vácuo previsto pela electrodinâmica quântica,” acrescenta Mignani. “Este estudo do VLT é a primeira resultado observacional que vai de encontro às previsões deste tipo de efeitos da electrodinâmica quântica, originados por campos magnéticos extremamente fortes,” diz Silvia Zane (UCL/MSSL, Reino Unido).
Mignani está entusiasmado com os avanços, nesta área de estudo, que poderão vir de observações feitas com telescópios mais avançados: “Medições de polarização com a nova geração de telescópios, tais como o European Extremely Large Telescope do ESO, podem desempenhar um papel crucial em testes de previsões da electrodinâmica quântica de efeitos de birrefringência do vácuo em torno de muitas mais estrelas de neutrões.  Estas medições, feitas agora pela primeira vez no visível, abrem também o caminho a medições semelhantes serem feitas em raios X,” acrescenta Kinwah Wu (UCL/MSSL, Reino Unido).
Fonte: ESO

A velocidade da luz pode ter ultrapassado a gravidade nos primeiros dias do universo

A velocidade da luz no vácuo (representada pela letra “c”) é praticamente a constante mais fundamental da física. De acordo com a teoria geral da relatividade, a gravidade viaja à mesma taxa. No entanto, um novo estudo sugere que a velocidade da luz pode não ter sido sempre essa. No universo primitivo, a luz pode ter ultrapassado a gravidade, e essa nova hipótese poderia resolver um dos maiores problemas da física.

Problema do horizonte
O chamado “problema do horizonte” basicamente lida com o fato de que o universo atingiu uma temperatura uniforme muito antes de partículas de luz (ou fótons) terem tempo de chegar a todos os cantos do universo. Se a velocidade da luz no vácuo realmente é constante, e sempre foi, então como o cosmos aqueceu tão rápido?  Normalmente, esse problema é tratado pela ideia de inflação – que sugere que o universo passou por um período de expansão enorme no seu início. A hipótese é que a temperatura deve ter estabilizado quando o universo era pequeno e condensado, quando a luz não tinha tanta distância para viajar, e então cresceu rapidamente. Isso faz sentido – exceto que ninguém sabe por que a inflação começou ou parou, e não há nenhuma maneira de testar isso.

Alternativa
Uma hipótese alternativa foi apresentada pelo físico Niayesh Ashfordi, do Instituto Perimeter, no Canadá, e João Magueijo, do Imperial College de Londres, no Reino Unido. A ideia é de que, nos dias mais precoces do universo, a luz e a gravidade viajavam em velocidades diferentes. Ou a luz costumava viajar mais rápido do que agora, ou a gravidade costumava viajar mais lentamente. De qualquer forma, se os fótons se moveram mais rápido do que a gravidade logo após o Big Bang, isso os teria deixado chegar longe o suficiente para o universo alcançar uma temperatura de equilíbrio muito mais rapidamente. Por ora, isso é apenas uma hipótese. Mas a parte emocionante é que ela pode realmente ser testada.

Índice espectral
Se a hipótese for verdadeira, haverá uma assinatura particular deixada na radiação cósmica de fundo em micro-ondas, a radiação que sobrou do Big Bang que ainda podemos detectar e estudar hoje. Um valor chamado índice espectral, que descreve as ondulações de densidade inicial no universo, seria fixo em 0,96479 se a teoria estiver correta. Curiosamente, o último índice espectral relatado no ano passado pelo satélite Planck, que mapeia o fundo em micro-ondas, foi de 0,968, não muito longe do número esperado se a luz e a gravidade viajassem a velocidades diferentes. Mais dados do Planck serão capazes de mostrar de uma vez por todas se esses números correspondem.

Teoria de tudo
Se o índice espectral do fundo de micro-ondas cósmico realmente coincidir com o valor previsto, então isso teria enormes implicações para a nossa compreensão da física. No momento, há uma grande lacuna entre a maneira como o universo parece operar na escala quântica (mecânica quântica) e na escala visível (relatividade geral), e os físicos estão desesperadamente procurando uma teoria para tentar unir as duas. A nova hipótese pode ser um bom caminho para compreendermos melhor o universo e a gravidade quântica.
Fonte: HypeScience.com

Cientistas sugerem que a formação do nosso Sistema Solar foi causada por uma supernova de baixa massa

Há cerca de 4,6 bilhões de anos, a nuvem de gás e poeira, que eventualmente formou o nosso Sistema Solar, foi perturbada. O colapso gravitacional resultante formou o uma protoestrela com um disco circundante onde os planetas nasceram. Essa nuvem pode ser parecida com alguma região no muito maior complexo de gás e poeira a cerca de 4.500 anos-luz de distância na direção da constelação de Cisne, observado pelo Telescópio Espacial Spitzer. Créditos: NASA/JPL-Caltech/Centro Harvard-Smithsonian para Astrofísica

Um time de pesquisa liderado pelo professor Yong-Zhong Qian da Escola de Física e Astronomia da Universidade de Minnesota (EUA) usou novos modelos e evidências a partir de meteoritos para demonstrar que uma supernova de baixa massa foi responsável pelo desencadeamento da formação do nosso Sistema Solar. Há cerca de 4,6 bilhões de anos, uma nuvem de gás e poeira, que eventualmente formou o nosso Sistema Solar, foi perturbada. O colapso gravitacional resultante formou o ‘proto-Sol’ com um disco envolvente onde os planetas eventualmente surgiram. Uma supernova (a explosão de uma estrela no final do seu ciclo de vida) teria energia suficiente para comprimir tal nuvem de gás.

No entanto, não existiam evidências conclusivas para suportar essa teoria. Adicionalmente, a natureza da supernova progenitora permanecia elusiva. O grupo de Yong-Zhong Qian decidiu focar-se nos isótopos de vida curta presentes no início do Sistema Solar. Devido à sua pequena vida, estes núcleos só podiam ter vindo de uma supernova precursora. As suas abundâncias no início do Sistema Solar foram inferidas pelos seus produtos de decaimento nos meteoritos. Como detritos da formação do Sistema Solar, os meteoritos são comparáveis aos tijolos e a argamassa que sobram em um local de construção. Eles nos contam sobre a composição do Sistema Solar e, em particular, quais os isótopos de curta duração que a supernova progenitora forneceu.

Yong-Zhong Qian declarou:
Esta é a evidência ‘forense’ que precisávamos para ajudar a explicar a formação do Sistema Solar. Ela aponta para uma supernova de baixa massa que atuou como ‘gatilho’.
Yong-Zhong Qian é um especialista na formação de isótopos em supernovas. As suas pesquisas anteriores se focaram em vários mecanismos pelos quais esses isótopos se formam em supernovas de diferentes massas. O seu time de pesquisa contou com o líder da pesquisa Projjwal Banerjee e com colaboradores Alexander Heger da Universidade Monash na Austrália e Wick Haxton da Universidade da Califórnia em Berkeley. Qian e o Ph.D. Projjwal Banerjee perceberam que os esforços anteriores no estudo da formação do Sistema Solar estavam focados em uma supernova de alta massa que atuou como um “gatilho”, o que teria deixado um conjunto de impressões digitais nucleares que não estão presentes nos registros meteóricos.

Qian e colaboradores decidiram testar se uma supernova de baixa massa, com cerca de 12 vezes a massa do nosso Sol, poderia explicar os registros encontrados meteoritos. Começaram a investigação examinando o Berílio-10, um núcleo de curta vida com 4 prótons (o quarto elemento na tabela periódica) e 6 nêutrons, como total de 10 unidades de massa atômica. Este isótopo encontra-se amplamente distribuído em meteoritos.

Na verdade, a ubiquidade do Berílio-10 consistia em uma espécie de mistério. Muitos cientistas teorizaram que a ‘espalação’ (o processo no qual as partículas altamente energéticas removem prótons ou nêutrons de um núcleo para formar novos núcleos) por raios cósmicos seria a responsável pelo Berílio-10 encontrado nos meteoritos. Qian disse que esta hipótese envolve muita informação incerta e presume que o Berílio-10 não pode ser fabricado em supernovas. Usando novos modelos de supernovas, Qian e colaboradores mostraram que o Berílio-10 pode ser produzido por ‘espalação’ de neutrinos tanto em supernovas de baixa massa como alta. No entanto, apenas uma supernova de massa baixa como “gatilho” para a formação do Sistema Solar é consistente com o registro meteórico em geral.
Yong-Zhong Qian explicou:
Os achados neste artigo abriram uma direção totalmente nova em nossa pesquisa. Além de explicar a abundância do Berílio-10, este modelo de supernova de baixa massa também explicaria os isótopos de curta duração do Cálcio-41, do Paládio-107 e alguns outros encontrados em meteoritos. O que não se consegue explicar deverá, então, ser atribuído a outras fontes que requerem um estudo detalhado.
Qian disse que o grupo de cientistas gostaria de examinar os mistérios restantes dos núcleos de curta duração encontrados em meteoritos. O primeiro passo, no entanto, é corroborar sua teoria examinando o Lítio-7 e o Boro-11, produzidos juntamente com o Berílio-10 por ‘espalação’ de neutrinos em supernovas. Qian realçou que poderão examinar isto em um artigo futuro e pediu aos cientistas que estudam meteoritos que examinem as correlações entre esses três isótopos recorrendo a medições precisas.  Os resultados foram publicados na Nature Communications no artigo intitulado “Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova”, assinado por Projjwal Banerjee, Yong-Zhong Qian, Alexander Heger e W C Haxton.

Related Posts Plugin for WordPress, Blogger...