22 de fev de 2017

A cauda de um buraco negro errante escondido na Via Láctea

Ilustração de um buraco negro errante movendo-se rapidamente através de uma nuvem densa de gás. O gás é arrastado pela gravidade do buraco negro formando uma corrente estreita. Crédito: Keio University.

É difícil encontrar buracos negros, já que eles não emitem luz. Mas em alguns casos os buracos negros produzem efeitos que podem ser visíveis. Por exemplo, se um buraco negro tiver uma estrela companheira, o gás da estrela que flui para dentro dele amontoa-se à sua volta e forma um disco. O disco aquece devido à enorme força gravitacional do buraco negro e emite radiação intensa. Mas se um buraco negro estiver a flutuar sozinho no espaço, nenhuma emissão dele proveniente será observada.

Uma equipe de investigação, liderada por Masaya Yamada, um estudante de pós-graduação na Universidade de Keio, Japão, e por Tomoharu Oka, professor da Universidade de Keio, usou o telescópio ASTE no Chile e o Radiotelescópio de 45 m no Observatório de Rádio Nobeyama, ambos operados pelo NAOJ (Observatório Astronómico Nacional do Japão), para observar nuvens moleculares ao redor do remanescente da supernova W44, localizado a 10 mil anos-luz de distância. O objetivo principal era examinar a quantidade de energia transferida da explosão de supernova para o gás molecular em redor, mas a equipa acabou por encontrar sinais de um buraco negro escondido na orla de W44.

Durante a investigação, a equipa descobriu uma nuvem molecular compacta com um movimento estranho. Esta nuvem, com o nome de Bullet (Bala), tem uma velocidade de mais de 100 km/s, excedendo a velocidade do som no espaço interestelar em mais de duas ordens de grandeza. Além disso, a nuvem, com o tamanho de dois anos-luz, move-se para trás, em sentido contrário ao da rotação da Via Láctea.
Diagramas esquemáticos de dois cenários para o mecanismo de formação de Bullet. (a) modelo de explosão e (b) modelo de irrupção. Ambos os diagramas mostram uma parte da frente de choque produzida pela expansão do remanescente de supernova W44. A onda de choque penetra no gás quiescente e comprime-o para formar gás denso. Bullet está localizada no centro do diagrama e tem um movimento completamente diferente em relação ao gás circundante. Crédito: Yamada et al. (Keio University).
Para investigar a origem da nuvem Bullet, a equipa observou-a intensivamente com o ASTE e com o Radiotelescópio de 45 m de Nobeyama. Os dados indicam que Bullet parece estar a saltar da orla do remanescente de supernova W44 com imensa energia cinética. “A maior parte de Bullet tem um movimento de expansão com velocidade de 50 km/s, mas a sua ponta tem uma velocidade de 120 km/s,” disse Yamada. “A sua energia cinética é algumas dezenas de vezes superior à injetada pela supernova W44. Parece impossível uma nuvem tão energética ter sido gerada num ambiente tão comum.”
A equipa propôs dois cenários para a formação de Bullet. Em ambos os casos, uma fonte de gravidade compacta, possivelmente um buraco negro, tem um papel importante. Um dos cenários é o modelo de explosão no qual uma bolha de gás em expansão do remanescente da supernova passa por um buraco negro estático. O buraco negro atrai o gás para muito perto, dando origem a uma explosão que acelera o gás na nossa direção. Os astrónomos estimaram para este caso que a massa do buraco negro será de 3,5 massas solares ou superior. O outro cenário é o modelo de irrupção, no qual um buraco negro com elevada velocidade atravessa um gás denso, sendo o gás arrastado pela forte gravidade do buraco negro para formar uma corrente de gás. Para este caso, os investigadores estimaram que a massa do buraco negro será de 36 massas solares ou superior. Com o conjunto de dados que existe, é ainda difícil para a equipa dizer qual dos cenários é o mais provável. 
Os estudos teóricos indicam que devem existir na Via Láctea entre 100 a 1000 milhões de buracos negros, embora até ao momento apenas aproximadamente uns 60 tenham sido identificados através de observações. “Descobrimos uma nova forma de achar buracos negros perdidos,” disse Oka. A equipa espera resolver os dois cenários possíveis e encontrar evidências mais sólidas para um buraco negro em Bullet realizando observações de maior resolução com o ALMA (Atacama Large Milimeter/submillimeter Array).
Fonte: Portal do Astrónomo

A Anã Superfria e os Sete Planetas

Mundos temperados do tamanho da Terra descobertos em sistema planetário extraordinariamente rico

Astrônomos descobriram um sistema com sete planetas do tamanho da Terra a cerca de apenas 40 anos-luz de distância. Com o auxílio de telescópios no espaço e também no solo, incluindo o Very Large Telescope do ESO, os planetas foram todos detectados quando passavam em frente da sua estrela progenitora, a estrela anã superfria chamada TRAPPIST-1. De acordo com o artigo científico publicado hoje na revista Nature, três dos planetas situam-se na zona habitável da estrela e poderão ter oceanos de água à superfície, aumentando a possibilidade deste sistema planetário poder conter vida. 
O sistema tem ao mesmo tempo o maior número de planetas do tamanho da Terra descoberto até agora e o maior número de mundos que poderão ter água líquida em sua superfície. Os astrônomos utilizaram o telescópio TRAPPIST-South instalado no Observatório de La Silla do ESO, o Very Large Telescope (VLT) situado no Paranal e o Telescópio Espacial Spitzer da NASA, além de outros telescópios em todo o mundo para confirmar a existência de pelo menos sete pequenos planetas em órbita da estrela anã vermelha fria TRAPPIST-1 Todos os planetas, com os nomes TRAPPIST-1b, c, d, e, f, g, h — por ordem crescente de distância à sua estrela — têm tamanhos semelhantes à Terra.
Diminuições na emissão da luz estelar causados por cada um dos sete planetas ao passarem em frente à estrela — os chamados trânsitos — permitiram aos astrônomos retirar informação sobre os seus tamanhos, composições  e órbitas. Os pesquisadores descobriram que pelo menos os seis planetas mais internos são comparáveis à Terra em termos de tamanho e temperatura.
O autor principal Michaël Gillon do Instituto STAR da Universidade de Liège, Bélgica, está muito contente com os resultados: “Trata-se de um sistema planetário extraordinário — não apenas por termos encontrado tantos planetas mas porque todos eles são surpreendentemente parecidos com a Terra em termos de tamanho!”

Com apenas 8% da massa do Sol, TRAPPIST-1 é muito pequena em termos estelares — apenas um pouco maior que o planeta Júpiter — e por isso apesar de se encontrar próxima a nós na constelação de Aquário, é muito fraca. Os astrônomos esperavam que tais estrelas anãs pudessem conter muitos planetas do tamanho da Terra em órbitas apertadas, o que as tornam alvos interessantes para a busca de vida extraterrestre, no entanto a TRAPPIST-1 é o primeiro sistema deste tipo a ser encontrado.

O co-autor Amaury Triaud explica: “A energia emitida por estrelas anãs como TRAPPIST-1 é muito menor do que a liberada pelo nosso Sol e por isso os planetas têm que ocupar órbitas muito mais próximas da estrela do que as que observamos no Sistema Solar para poderem ter água na superfície. Felizmente, parece que este tipo de configuração compacta é exatamente o que observamos em torno de TRAPPIST-1!”
A equipe determinou que todos os planetas no sistema são semelhantes à Terra e a Vênus em termos de tamanho, ou ligeiramente menores. As medições de densidade sugerem que pelo menos os seis planetas mais internos têm provavelmente uma composição rochosa.  

As órbitas dos planetas não são muito maiores que as apresentadas pelo sistema de satélites galileanos situado em torno de Júpiter, sendo muito menores que a órbita de Mercúrio no Sistema Solar. No entanto, o pequeno tamanho da TRAPPIST-1 assim como a sua temperatura baixa significam que a emissão de energia dirigida aos seus planetas é semelhante à recebida pelos planetas internos do nosso Sistema Solar; os planetas TRAPPIST-1c, d, f recebem quantidades de energia comparáveis às que os planetas Vênus, Terra e Marte, respectivamente, recebem do Sol.
Os sete planetas descobertos neste sistema estelar podem potencialmente conter água líquida em sua superfície, apesar das distâncias orbitais tornarem alguns candidatos mais prováveis a esta condição do que outros. 

Os modelos climáticos sugerem que os planetas mais internos, TRAPPIST-1b, c, d, são provavelmente muito quentes para possuírem água líquida, exceto talvez numa pequena fração das suas superfícies. A distância orbital do planeta mais exterior do sistema, TRAPPIST-1h, ainda não foi confirmada, embora este objeto pareça encontrar-se muito afastado e frio para poder conter água líquida — assumindo que não ocorrem nenhuns processos de aquecimento alternativos.  No entanto, os planetas TRAPPIST-1e, f, g representam o “santo graal” para os astrônomos que procuram planetas, uma vez que orbitam na zona habitável da estrela e poderão conter oceanos de água em suas superfícies.

Estas novas descobertas fazem do sistema TRAPPIST-1 um alvo muito importante para um futuro estudo. O Telescópio Espacial Hubble da NASA/ESA já está sendo utilizado para procurar atmosferas em torno destes planetas e o membro da equipe Emmanuël Jehin está entusiasmado com as perspectivas futuras:”Com a próxima geração de telescópios, como o European Extremely Large Telescope do ESO e o Telescópio Espacial James Webb da NASA/ESA/CSA, vamos muito rapidamente poder procurar água e talvez até evidências de vida nestes mundos.”
Fonte: ESO
Related Posts Plugin for WordPress, Blogger...