7 perguntas ainda não respondidas pela Física

 Na Física, existem diversas perguntas sobre o Universo, átomos, gravidade, matéria, tempo, entre outros assuntos, que permanecem sem respostas.

O formato das galáxias depende da existência de uma matéria exótica chamada matéria escura.

Às vezes, pode parecer que a Física tem a resposta de todas as nossas dúvidas sobre a natureza e a realidade, entretanto, não é bem assim. Sempre que se obtém uma nova pista sobre como o mundo funciona, novas dúvidas surgem, e é assim que a Física funciona: criando novas perguntas. 

Conheça, neste artigo, algumas das principais perguntas que a Física propôs e que ainda não foi capaz de responder: 

1. O que é matéria escura?

O movimento e a conformação das galáxias da forma como as conhecemos hoje seriam impossíveis se considerássemos somente o conhecimento que temos atualmente sobre a gravitação. De acordo com esse conhecimento, já avançado, graças às teorias da relatividade de Albert Einstein, a quantidade de matéria observável presente nas galáxias é insuficiente para explicar, entre outras coisas, o seu formato. 

Dessa forma, prevê-se que exista um tipo exótico de matéria, batizado de matéria escura. Estima-se que 85% da matéria de todo o Universo sejam formados por matéria escura, um tipo diferente de matéria, que permeia todo o espaço e que não interage com a matéria ordinária por outros meios se não pelos efeitos gravitacionais. De fato, a cosmologia ainda não foi capaz de explicar do que se trata esse tipo de matéria, quais as suas propriedades ou, sequer, detectá-la. 

2. Assimetria entre matéria e antimatéria

Para cada tipo de partícula conhecida existe uma antipartícula, isto é, trata-se de partículas idênticas, apenas com a carga elétrica invertida. Por exemplo, para o elétron ordinário, de carga negativa, existe uma antipartícula, chamada pósitron, dotada de carga elétrica positiva. A maior dúvida da Física sobre a antimatéria é: se matéria e antimatéria têm propriedades iguais, por qual razão as quantidades de matéria e antimatéria não são iguais no Universo? A assimetria bariônica é um dos problemas vigentes da cosmologia. 

3. O tempo é linear?

De acordo com os conhecimentos da Física clássica, o tempo é linear, ou seja, não pode ser acelerado, retardado, muito menos revertido. Além disso, de acordo com a 2ª Lei da Termodinâmica, todos os fenômenos físicos acontecem espontaneamente em um único sentido, que é definido de acordo com a mudança de uma grandeza física termodinâmica conhecida como entropia. É graças a isso que conseguimos diferenciar um vídeo normal de um vídeo que foi gravado de trás para frente, por exemplo. 

Algumas teorias recentes sobre a natureza do tempo, como a Teoria da Relatividade Geral, elaborada por Einstein, permitem a existência de estruturas chamadas pontes de Einstein-Rosen, comumente conhecidas por buracos de minhoca. Segundo especulações, os buracos de minhoca permitiriam que viagens temporais ocorressem, levando-nos ao passado ou ao futuro, da mesma forma como mudamos a nossa posição ao deslocarmo-nos de um ponto a outro. 

4. O que havia antes do Big Bang?

Embora essa não seja uma pergunta recorrente entre os acadêmicos de Física, muitos leigos perguntam-se sobre a origem do suposto átomo primordial que dera origem ao Universo. A Física ocupa-se em descrever os mecanismos que levaram à origem e ao desenvolvimento das estrelas e galáxias. 

Foi por essa razão que a teoria do Big Bang surgiu: uma tentativa de explicar a expansão acelerada do Universo, bem como as diferentes velocidades de afastamento das galáxias. Aparentemente, a teoria do Big Bang é capaz de explicar esses fenômenos e também a existência da radiação cósmica de fundo. No entanto, para que isso fosse possível, algumas suposições foram assumidas, como a provável existência da singularidade antes do início do período de inflação do Universo. 

Existem algumas teorias que afirmam que a energia do Universo sempre existiu, que ela nunca teve um início e nunca terá um fim, entretanto, algumas outras afirmam que o Universo surgiu espontaneamente e desaparecerá, eventualmente, da mesma forma. De qualquer forma, todas essas são passam de teorias, sem qualquer comprovação experimental que as reforce. 

5. O Universo é finito?

Os físicos buscam incessantemente responder a essa pergunta, para isso, fazem uso de telescópios extraordinariamente precisos, capazes de enxergar com resolução infinitamente superior à do olho humano. 

Os astrônomos vasculharam o céu noturno ao longo dos últimos anos buscando padrões de repetições em nossa volta. Caso o Universo fosse finito, poderíamos ver quando alguma estrela ou constelação repetida. A resposta sobre isso é um pouco assustadora: percorrendo os telescópios distâncias de até 13,8 bilhões de anos-luz (a distância que a luz percorre durante um ano no vácuo), não se observou qualquer repetição. 

O tamanho mínimo aceito para o Universo é de 13,8 bilhões de anos-luz. Entretanto, isso não significa que ele seja desse tamanho. De fato, esse número é atribuído não ao raio do Universo, mas ao raio do Universo observável: aquilo que podemos observar, com base na resolução de nossos telescópios mais avançados. 

6. Por que há no Universo mais elementos pares que ímpares?

O efeito Oddo-Harkins estabelece que a abundância cósmica dos elementos de número atômico par, presentes na Tabela Periódica, é maior do que a dos seus elementos adjacentes e ímpares. Por exemplo, existe mais carbono no Universo (número atômico 6) do que boro (número atômico 5) e nitrogênio (número atômico 7). 

Existem algumas teorias a respeito desse comportamento, uma delas diz respeito à nucleossíntese, que ocorre no interior das estrelas: o processo de fusão nuclear ocorre com átomos de hélio (número atômico 2), portanto, a adição de átomos de hélio levaria somente à formação de elementos de número atômico par. Logo, a perda ou o ganho de um ou mais prótons transmutaria os elementos pares em elementos ímpares. 

7. Gravidade quântica

Até então, a Física não foi capaz de unir a força gravitacional ao modelo padrão da Física de partículas, isto é, ainda não foi possível unificar a explicação das demais forças da natureza à noção de gravidade. 

Alguns modelos sugerem a existência de um bóson que foi batizado de graviton. De acordo com a teoria quântica da gravidade, a interação gravitacional é mediada por essa partícula que não possui massa nem carga. Além disso, de acordo com o artigo científico de 2004, chamado “Can gravitons be detected?”, escrito pelos físicos Tony Rothman e Stephen Boughn e publicado na revista científica Foundations of Physics, em razão do seu minúsculo “tamanho”, seria praticamente impossível observar diretamente a existência de um graviton.

Por Me. Rafael Helerbrock

Comentários

Postagens mais visitadas deste blog

Mu Cephei

Eta Carinae

Astrônomos encontram planetas ‘inclinados’ mesmo em sistemas solares primitivos

Júpiter ao luar

Ganimedes de Juno

A Lagoa Profunda

Cometa, Planeta, Lua

Orionídeos em Touro

Astrônomos identificam possíveis civilizações alienígenas em estrelas

Marcando Bennu