Postagens

Mostrando postagens com o rótulo Buracos Negros

Primeiros momentos turbulentos da vida de um buraco negro capturados em novas simulações

Imagem
Os cientistas modelaram como os buracos negros e as estrelas de nêutrons se formam após o colapso de estrelas moribundas e explicaram por que alguns recebem um forte “chute” no espaço interestelar.   Uma ilustração da formação de um buraco negro primitivo. (Crédito da imagem: NASA/JPL-Caltech) Os astrônomos descobriram como algumas estrelas moribundas expulsam buracos negros bebés do útero – e não é nada bonito.  Estes raros buracos negros recebem um impulso significativo quando as suas estrelas-mãe morrem numa explosão cataclísmica, lançando os recém-nascidos glutões gravitacionais a velocidades incríveis, descobriu um novo estudo. As descobertas podem lançar luz sobre os primeiros momentos enigmáticos da vida de um buraco negro. Buracos negros e estrelas de nêutrons nascem no coração de estrelas massivas e moribundas. Quando estrelas com pelo menos oito vezes a massa do Sol estão próximas do fim de suas vidas, elas fundem ferro em seus núcleos. Pressões intensas transformam ess

Agora temos matemática precisa para descrever como os buracos negros refletem nosso universo

Imagem
Os astrônomos desenvolveram um conjunto de equações que podem descrever com precisão os reflexos do Universo que aparecem na luz distorcida em torno de um buraco negro.   Impressão artística de fótons girando em torno de um buraco negro. (Nicolle R. Fuller/NSF)   A proximidade de cada reflexão depende do ângulo de observação em relação ao buraco negro e da taxa de rotação do buraco negro, de acordo com uma solução matemática elaborada pelo estudante de física Albert Sneppen do Instituto Niels Bohr em Dinamarca em julho de 2021. Isso foi muito legal, sem dúvida, mas não foi apenas muito legal. Também nos deu potencialmente uma nova ferramenta para sondar o ambiente gravitacional em torno destes objetos extremos. "Há algo de fantasticamente belo em entender agora por que as imagens se repetem de maneira tão elegante," Sneppen disse em uma declaração de 2021.  Além disso, oferece novas oportunidades para testar nossa compreensão da gravidade e dos buracos negros." S

O que acontece no centro de um buraco negro?

Imagem
Toda a matéria num buraco negro está concentrada num ponto central de densidade infinita e tamanho infinitamente pequeno – uma singularidade. Crédito: Dotted Yeti/Shutterstock. Os buracos negros têm centros? Se sim, o que está acontecendo lá? Einstein passou 10 anos lutando com três conceitos fundamentais da física: aceleração, a teoria da relatividade especial e a força gravitacional. Este esforço heróico culminou em 1915 com a teoria geral da relatividade, um elegante conjunto de equações que relacionam a curvatura do espaço-tempo com a matéria que nele se move. Embora simples de escrever, encontrar soluções para estas equações tem intrigado físicos e matemáticos desde então. Para abordar qualquer conjunto de equações relacionadas a um sistema físico que evolui com o tempo, um bom começo é fazer suposições que simplifiquem as coisas. Apenas um mês após a publicação de Einstein, Karl Schwarzschild descobriu uma das soluções mais simples. A sua descrição relacionando uma massa

Uma viagem de 10 bilhões de anos e 50 mil anos-luz até um buraco negro

Imagem
Uma estrela perto do buraco negro supermassivo no centro da Via Láctea originou-se fora da galáxia, de acordo com um novo estudo publicado em Proceedings of the Japan Academy, Série B. Esta é a primeira vez que uma estrela de origem extragaláctica é encontrada nas proximidades do buraco negro supermassivo. A região central da Via Láctea capturada pelo Telescópio Subaru. A imagem mostra muitas estrelas num campo de visão com cerca de 0,4 anos-luz de diâmetro. A estrela S0-6 (círculo azul), objeto deste estudo, está localizada a cerca de 0,04 anos-luz do buraco negro supermassivo Sagitário A* (Sgr A*, círculo verde). Crédito: Universidade de Educação de Miyagi/NAOJ Muitas estrelas são observadas perto do buraco negro supermassivo conhecido como Sagitário A*, no centro da nossa galáxia. Mas a intensa gravidade do buraco negro torna o ambiente circundante demasiado hostil para a formação de estrelas perto do buraco negro. Todas as estrelas observadas devem ter se formado em algum outro l

Desvendando o Universo: A Simulação de Buracos Negros e a Radiação de Hawking

Imagem
Um modelo experimental que imita um buraco negro pode lançar luz sobre um tipo teórico de radiação emitida por buracos negros reais.   Em 2022, um grupo de físicos utilizou uma sequência linear de átomos para simular o horizonte de eventos de um buraco negro. Eles observaram um fenômeno semelhante à radiação de Hawking – emissões resultantes de perturbações quânticas causadas pela interrupção do espaço-tempo pelo buraco negro. Esta descoberta poderia ajudar a unificar duas teorias contraditórias do universo: a teoria geral da relatividade, que explica a gravidade como um campo contínuo conhecido como espaço-tempo, e a mecânica quântica, que descreve o comportamento de partículas distintas através da matemática da probabilidade. Para desenvolver uma teoria abrangente da gravidade quântica aplicável universalmente, é necessário que estas duas teorias divergentes encontrem uma forma de coexistir harmoniosamente. Os buracos negros, considerados os fenômenos mais estranhos e extremos

Como os buracos negros consomem entropia

Imagem
A entropia é um daqueles conceitos assustadoramente profundos que formam o núcleo de campos inteiros da física (neste caso, a termodinâmica), que infelizmente é tão matemático que é difícil de explicar em linguagem simples. Mas vamos tentar. Sempre que vejo a palavra entropia, gosto de substituí-la pela frase “contando o número de maneiras pelas quais posso reorganizar um cenário e deixá-lo praticamente igual”. Isso é um pouco complicado, eu concordo, e então a entropia terá que servir. Visão artística de buracos negros em órbita. Crédito: Caltech/R. Ferido (IPAC)   Você acorda na manhã do fim de semana e decide finalmente enfrentar a tarefa monumental de limpar seu quarto. Você pega, limpa, dobra e guarda suas roupas. Você ajeita seus lençóis. Você afofa seus travesseiros. Você organiza sua gaveta de roupas íntimas. Depois de horas de esforço, você se afasta para admirar seu trabalho, mas já pode sentir uma sensação de desconforto no estômago. Em pouco tempo, você sabe que tudo fic

Respondendo a perguntas antigas sobre jatos de buracos negros

Imagem
A única coisa que todos sabem sobre os buracos negros é que absolutamente tudo o que está próximo é sugado para dentro deles. Quase tudo, ao que parece. O buraco negro M87* ( o asterisco designa o buraco negro no meio da galáxia M87) chamou a atenção do mundo quando foi detectado pela primeira vez pelo Event Horizon Telescope. Desde então, os astrofísicos de Princeton descobriram que o campo magnético torcido em torno de um buraco negro determina a espiral de polarização reveladora observada nas imagens de buracos negros. Em particular, a direção do fluxo de energia (do buraco para o campo ou vice-versa) determina como a polarização se torce. Medindo em que direção a polarização gira, pode-se inferir se o campo magnético está extraindo energia de spin do buraco ou bombeando energia de spin para ele. Crédito: Modelo de Andrew Chael, George Wong, Alexandru Lupsasca e Eliot Quataert, Princeton Gravity Initiative   "Mesmo que os buracos negros sejam definidos como objetos dos quais

UHZ1: Galáxia Distante e Buraco Negro

Imagem
  Crédito da imagem: Raio-X: NASA/CXC/SAO/Ákos Bogdán; Infravermelho: NASA/ESA/CSA/STScI; Processamento de imagem: NASA/CXC/SAO/L. Frattare & K. Arcand Dominado pela matéria escura , o enorme aglomerado de galáxias Abell 2744 é conhecido por alguns como Aglomerado de Pandora . Fica a 3,5 bilhões de anos-luz de distância, em direção à constelação do Escultor. Usando a enorme massa do aglomerado de galáxias como lente gravitacional para distorcer o espaço-tempo e ampliar objetos ainda mais distantes diretamente atrás dele, os astrônomos encontraram uma galáxia de fundo, UHZ1, com um notável desvio para o vermelho de Z=10,1 . Isto coloca o UHZ1 muito além de Abell 2744, a uma distância de 13,2 mil milhões de anos-luz, visto quando o nosso Universo tinha cerca de 3% da sua idade atual. UHZ1 é identificado nas inserções desta imagem composta combinando raios X (tons roxos) do Observatório de Raios X Chandra, baseado no espaço, e luz infravermelha do Telescópio Espacial James Webb. A e

Descoberta reveladora: Sagitário A* e seus segredos desvendados

Imagem
No centro de nossa galáxia, encontra-se um enigma sombrio, um buraco negro supermassivo chamado Sagitário A*. Astrônomos têm conhecimento da existência de Sgr A* há algum tempo e conseguiram até mesmo capturar uma imagem espetacular dele em 2022, mas obter medidas exatas de seu tamanho e atividade tem se mostrado desafiador.   Uma imagem do buraco negro supermassivo no centro da Via Láctea, um gigante apelidado de Sagitário A*, revelada pelo Event Horizon Telescope em 12 de maio de 2022. (Crédito da imagem : colaboração Event Horizon Telescope) Agora, de acordo com novas descobertas do Instituto Max Planck de Física Extraterrestre (MPE), um grupo de astrônomos determinou, com alta precisão, a massa e o raio de Sgr A*. Especificamente, descobriu-se que Sgr A* possui uma massa impressionante de 4,297 milhões de massas solares – com um raio menor do que a órbita de Vênus ao redor do sol. A equipe deduziu essa informação estudando o gás luminoso encontrado na órbita desse vazio colossa

Os fortes campos magnéticos de um buraco negro supermassivo revelados sob uma nova luz

Imagem
A  colaboração Event Horizon Telescope  (EHT) publicou novos resultados que descrevem pela primeira vez como a luz proveniente da borda do buraco negro supermassivo M87* espirala à medida que escapa à intensa gravidade do buraco negro, uma assinatura conhecida como polarização circular. Uma simulação computacional de um disco de plasma ao redor do buraco negro supermassivo no centro da galáxia M87. Uma nova análise da luz polarizada circularmente, ou em espiral, nas observações do EHT, mostra que os campos magnéticos perto do buraco negro são fortes. Esses campos magnéticos empurram a matéria que cai e ajudam a lançar jatos de matéria a velocidades próximas à da luz. Crédito: George Wong   A maneira como o campo elétrico da luz prefere girar no sentido horário ou anti-horário enquanto viaja carrega informações sobre o campo magnético e os tipos de partículas de alta energia ao redor do buraco negro. O   novo artigo, publicado hoje no Astrophysical Journal Letters , apoia descobertas

Observações ALMA revelam processo de reciclagem de gás perto de um buraco negro supermassivo

Imagem
Alcançando uma resolução sem precedentes de cerca de um ano-luz, a investigação, liderada pelo Professor Assistente Takuma Izumi do NAOJ , iluminou a intrincada dança dos fluxos de gás em torno do buraco negro supermassivo da galáxia, abrangendo fases plasmáticas, atómicas e moleculares.  Uma ilustração representando a distribuição do meio interestelar no núcleo galáctico ativo com base nos resultados desta observação. O gás molecular de alta densidade flui da galáxia em direção ao buraco negro ao longo do plano do disco. O material acumulado em torno do buraco negro gera uma enorme quantidade de energia, fazendo com que o gás molecular seja destruído e transformado em fases atómicas e de plasma. A maior parte destes gases multifásicos é expelida através de fluxos a partir do núcleo (incluindo fluxos de plasma que ocorrem principalmente na direção acima do disco e fluxos atómicos ou moleculares que ocorrem principalmente na diagonal). Ainda assim, a maioria destes fluxos cairá de volta

Buracos negros supermassivos interrompem a formação de estrelas durante o meio-dia cósmico, diz astrônomo

Imagem
Desde que entrou em funcionamento, há quase dois anos, o Telescópio Espacial James Webb (JWST) produziu inúmeras imagens deslumbrantes do Universo e permitiu novas informações sobre a sua evolução. Ilustração de um quasar ativo. Uma nova pesquisa mostra que os SMBHs comem rápido o suficiente para desencadeá-los. Crédito: ESO/M. Kornmesser   Em particular, os instrumentos do telescópio são otimizados para estudar a época cosmológica conhecida como alvorecer cósmico , ca. 50 milhões a um bilhão de anos após o Big Bang, quando as primeiras estrelas , buracos negros e galáxias do universo se formaram. No entanto, os astrónomos também estão a observar melhor a época que se seguiu, o meio-dia cósmico, que durou entre 2 e 3 mil milhões de anos após o Big Bang. Foi nessa época que as primeiras galáxias cresceram consideravelmente, a maioria das estrelas do universo se formou e os buracos negros supermassivos (SMBHs) tornaram-se quasares incrivelmente luminosos. Os cientistas estão ansiosos

Telescópios da NASA descobrem buraco negro que quebra recordes

Imagem
Os astrônomos descobriram o buraco negro mais distante já visto em raios X, usando telescópios da NASA. O buraco negro está numa fase inicial de crescimento nunca antes observada, onde a sua massa é semelhante à da sua galáxia hospedeira. Crédito: Raio X: NASA/CXC/SAO/Ákos Bogdán; Infravermelho: NASA/ESA/CSA/STScI; Processamento de imagem: NASA/CXC/SAO/L. Frattare & K. Arcand   Este resultado pode explicar como se formaram alguns dos primeiros buracos negros supermassivos do Universo.  Ao combinar dados do Observatório de Raios-X Chandra da NASA e do Telescópio Espacial James Webb da NASA, uma equipa de investigadores conseguiu encontrar a assinatura reveladora de um buraco negro em crescimento apenas 470 milhões de anos após o big bang.   “Precisávamos do Webb para encontrar esta galáxia notavelmente distante e do Chandra para encontrar o seu buraco negro supermassivo”, disse Akos Bogdan do Center for Astrophysics | Harvard & Smithsonian (CfA), que lidera um novo artigo na