15 de agosto de 2018

6 fatos extremos sobre as estrelas de nêutrons

As estrelas de nêutrons estão entre os objetos mais extremos do universo. Elas são formadas quando estrelas massivas, com cerca de oito vezes a massa do Sol, estão em seus últimos momentos de vida. Enquanto a maior parte do material da estrela é expelido para o universo em uma supernova, seu núcleo colapsa para criar uma estrela de nêutrons, a forma mais densa de matéria observável no universo.

A gravidade é tão forte nestes objetos que ela pressiona o material sobre si mesmo com tanta força que os prótons e os elétrons se combinam para produzir nêutrons – daí o nome “estrela de nêutrons”. As estrelas de nêutrons mantêm sua massa extremamente densa – de cerca de 1,5 vezes a massa do Sol – dentro de um diâmetro entre 20 e 30 quilômetros (a imagem do item 2 mostra o tamanho de uma estrela de nêutrons comparado com o da cidade canadense de Montreal). Elas são tão densas que uma única colher de chá de seu material pesaria um bilhão de toneladas.

O site Simmetry Magazine selecionou cinco fenômenos muito interessantes relacionados a estas estrelas extremas que, segundo a publicação, podem ajudar os físicos a entender as forças fundamentais, a relatividade geral e o universo primordial. Veja abaixo a lista:

5. Quantidades inimagináveis de energia
A matéria comum contém aproximadamente números iguais de prótons e nêutrons. Mas a maioria dos prótons em uma estrela de nêutrons se converte em nêutrons – as estrelas de nêutrons são formadas por cerca de 95% de nêutrons. Quando os prótons se convertem em nêutrons, eles liberam partículas onipresentes chamadas neutrinos. 

Apenas nos primeiros segundos após uma estrela começar sua transformação em uma estrela de nêutrons, a energia que sai dela na forma de neutrinos é igual à quantidade total de luz emitida por todas as estrelas no universo observável. Estrelas de nêutrons são feitas em explosões de supernovas. Estas explosões emitem quantidades absurdas de energia. Uma supernova irradia 10 vezes mais neutrinos do que os prótons, nêutrons e elétrons existentes no Sol.

4. Campo de testes extremo
As estrelas de nêutrons têm alguns dos campos gravitacionais e magnéticos mais fortes do universo. A gravidade é forte o suficiente para achatar quase qualquer coisa na superfície. Os campos magnéticos de estrelas de nêutrons podem ser entre um bilhão de vezes até um milhão de bilhões de vezes mais fortes do que o campo magnético na superfície da Terra – segundo a publicação da Simmetry Magazine, especula-se que, se houvesse vida em estrelas de nêutrons, ela seria bidimensional.

“Tudo sobre as estrelas de nêutrons é extremo. Isso chega ao ponto de ser quase ridículo”, diz na publicação da Simmetry James Lattimer, professor da Universidade Stony Brook, nos EUA.

Por serem tão densas, as estrelas de nêutrons fornecem o campo de teste perfeito para os cientistas entenderem como funciona a força forte, a interação entre quarks e glúons. Muitas teorias prevêem que o núcleo de uma estrela de nêutrons comprime nêutrons e prótons, liberando os quarks que compõem estas partículas.

As medições feitas em estrelas de nêutrons nos dão alguns dos testes mais precisos da relatividade geral. A intensa gravidade das estrelas de nêutrons requer que os cientistas usem a teoria geral da relatividade para descrever as propriedades físicas destes corpos.
O Prêmio Nobel de Física de 1993 foi para cientistas que mediram a velocidade com que um par de estrelas de nêutrons orbitando uma à outra entravam em uma espiral devido à emissão de radiação gravitacional, um fenômeno previsto pela teoria geral da relatividade de Albert Einstein.

Apesar de suas incríveis densidades e extrema gravidade, as estrelas de nêutrons ainda conseguem manter uma quantidade surpreendente de estruturas internas, como crostas, oceanos e atmosferas. “Elas são uma mistura estranha de algo como a massa de uma estrela mas com algumas das outras propriedades de um planeta”, diz Chuck Horowitz, professor da Universidade de Indiana, também nos EUA. A gravidade de uma estrela de nêutrons é tão extrema, entretanto, que sua atmosfera pode se estender por menos de 30 centímetros.

3. Velocidades incríveis

Os cientistas observaram estrelas de nêutrons pela primeira vez em 1967, quando uma estudante de graduação chamada Jocelyn Bell notou repetidos pulsos de rádio que chegavam de um pulsar fora do nosso sistema solar. Os cientistas acreditam que a maioria das estrelas de nêutrons atualmente são – ou em algum momento foram – pulsares, estrelas que emitem feixes de ondas de rádio à medida que giram rapidamente.

Os pulsares podem girar de dezenas a centenas de vezes por segundo – a estrela de nêutrons conhecida em rotação mais rápida gira cerca de 700 vezes por segundo. Se alguém estivesse no equador do pulsar mais rápido conhecido, a velocidade rotacional seria de cerca de um décimo da velocidade da luz.

Cientistas do Observatório de Ondas Gravitacionais por Interferômetro a Laser, ou LIGO, anunciaram em 2016 que haviam detectado ondas gravitacionais pela primeira vez. No futuro, pode ser possível usar os pulsares como versões gigantes e ampliadas do experimento LIGO, tentando detectar as pequenas mudanças na distância entre os pulsares e a Terra à medida que uma onda gravitacional passa entre os dois pontos.

2. Estragos na vizinhança
Os campos gravitacionais das estrelas de nêutrons podem ser bastante perigosos para quem está em seus arredores. Se uma estrela de nêutrons entrasse em nosso sistema solar, poderia causar o caos ao modificar as órbitas dos planetas. Se ela chegasse perto o suficiente da Terra, poderia elevar as marés e destruir o planeta. Para nossa sorte, a estrela de nêutrons mais próxima está a cerca de 500 anos-luz de distância.

Outro perigo de uma estrela de nêutrons é a radiação do seu campo magnético. Os magnetares são estrelas de nêutrons com campos magnéticos mil vezes mais fortes que os campos extremamente fortes dos pulsares “normais”. Rearranjos súbitos desses campos podem produzir erupções semelhantes a erupções solares, mas muito mais poderosas.

Em 27 de dezembro de 2004, cientistas observaram uma explosão de raios gama gigante do Magnetar SGR 1806-20, que está estimada em cerca de 50.000 anos-luz de distância. Em 0,2 segundos, o clarão irradiava tanta energia quanto o sol produz em 300 mil anos. O clarão saturou muitos detectores de espaçonaves e produziu perturbações detectáveis ​​na ionosfera da Terra. Felizmente, não estamos cientes de qualquer magnetar próximo e poderoso o suficiente para causar qualquer dano aqui na Terra.

Os campos gravitacionais das estrelas de nêutrons podem ser bastante perigosos para quem está em seus arredores. Se uma estrela de nêutrons entrasse em nosso sistema solar, poderia causar o caos ao modificar as órbitas dos planetas. Se ela chegasse perto o suficiente da Terra, poderia elevar as marés e destruir o planeta. Para nossa sorte, a estrela de nêutrons mais próxima está a cerca de 500 anos-luz de distância.

Outro perigo de uma estrela de nêutrons é a radiação do seu campo magnético. Os magnetares são estrelas de nêutrons com campos magnéticos mil vezes mais fortes que os campos extremamente fortes dos pulsares “normais”. Rearranjos súbitos desses campos podem produzir erupções semelhantes a erupções solares, mas muito mais poderosas.

Em 27 de dezembro de 2004, cientistas observaram uma explosão de raios gama gigante do Magnetar SGR 1806-20, que está estimada em cerca de 50.000 anos-luz de distância. Em 0,2 segundos, o clarão irradiava tanta energia quanto o sol produz em 300 mil anos. O clarão saturou muitos detectores de espaçonaves e produziu perturbações detectáveis ​​na ionosfera da Terra. Felizmente, não estamos cientes de qualquer magnetar próximo e poderoso o suficiente para causar qualquer dano aqui na Terra.

1. Temos muito a descobrir sobre elas
Há muitas coisas que não sabemos sobre estrelas de nêutrons. “Nós sabemos de cerca de 2000 estrelas de nêutrons em nossa própria galáxia, mas esperamos que haja bilhões a mais. Então, a maioria das estrelas de nêutrons, mesmo em nossa própria galáxia, é completamente desconhecida”, diz Horowitz na publicação.

Um dos métodos para estudarmos estrelas de nêutrons é detectando ondas gravitacionais. Os cientistas do LIGO esperam detectar ondas gravitacionais produzidas pela fusão de duas estrelas de nêutrons. Estudar essas ondas gravitacionais pode indicar aos cientistas as propriedades da matéria extremamente densa de que são feitas as estrelas de nêutrons.

Estudar estrelas de nêutrons pode nos ajudar a descobrir a origem dos elementos químicos pesados, incluindo ouro e platina, em nosso universo. Há uma possibilidade de que quando estrelas de nêutrons colidam, nem tudo seja engolido em uma estrela de nêutrons mais massiva ou em um buraco negro, mas, em vez disso, alguma fração seja expelida e forme esses elementos pesados.

Bônus: Estrelas de nêutrons dobram a luz de forma que é possível ver a parte de trás delas
Em média, a gravidade em uma estrela de nêutrons é 2 bilhões de vezes mais forte que a gravidade na Terra. Essa gravidade é forte o suficiente para dobrar significativamente a radiação da estrela, permitindo que os astrônomos vejam parte do lado de trás da estrela.
Este processo é conhecido como lente gravitacional, uma distorção no espaço-tempo causada pela presença de um corpo de grande massa, no caso, a estrela, e o observador. As lentes gravitacionais também foram previstas na Relatividade Geral de Einstein. De acordo com a Relatividade, a luz segue a curvatura do espaço-tempo. Portanto, quando a luz passa em torno de um objeto maciço, ela é dobrada. Isso significa que a luz de um objeto do outro lado será direcionada para o olho de um observador, como acontece com uma lente comum.
Fonte: hypescience.com

Estrelas Anãs Negras: O Fim (Teórico) da Evolução Estelar

 Telescópio Espacial Hubble da NASA captura um campo de cascas estelares. Essas antigas anãs brancas têm entre 12 e 13 bilhões de anos, apenas um pouco mais jovens que o próprio universo. Em teoria, as anãs brancas acabarão por deixar de emitir luz e calor e tornar-se anãs negras.Crédito: NASA e H. Richer (Universidade de British Columbia).

O último estágio da evolução estelar é uma anã negra. Uma vez que não emitem calor ou luz, esses objetos constituíam um desafio para serem detectados se eles realmente existissem atualmente. No entanto, com menos de 14 mil milhões de anos, o universo ainda é demasiado jovem para ter criado quaisquer anãs negras! A estrela que não tenha massa necessária para explodir em supernova tornar-se-á uma anã branca, uma estrela "morta" que queimou todo o seu hidrogénio e hélio. Mas a anã branca permanece quente durante algum tempo.

Depois de passar tempo suficiente, todo o calor residual será irradiado para fora da estrela. Já sem emitir calor ou luz, a anã branca vai-se tornar uma anã negra, tornando-se difícil de encontrar. No entanto, ainda manteria a sua massa, permitindo aos cientistas detectar os efeitos produzidos pelo seu campo gravitacional.  Mas não há ainda necessidade de começar a procurar por anãs negras. Neste momento, são estritamente teóricas. Os cientistas calcularam que uma anã branca leva dezenas de centenas de milhões de anos para arrefecer e tornar-se uma anã negra.

Mesmo que uma anã branca se formasse no momento do Big Bang - uma impossibilidade, uma vez que uma estrela tem de passar por várias etapas evolutivas que levam pelo menos mil milhões de anos - ainda seria uma anã branca hoje, não tendo ainda suficientemente resfriado. Anãs marrons, objetos pequenos demais para ter atingido o ponto de fusão, já foram chamadas erroneamente de anãs negras. Uma anã negra não deve ser confundida com um buraco negro ou uma estrela de neutrões, objetos que existem atualmente e podem ser observados. 
Fonte: Space

Em uma região massiva do espaço, os astrônomos encontram muito menos galáxias do que esperavam


Simulação computacional da distribuição da matéria no universo.As regiões laranja hospedam galáxias; estruturas azuis são gás e matéria escura.Um estudo da Universidade da Califórnia demonstrou que as regiões opacas do universo são como os grandes vazios na distribuição da galáxia nessa imagem, porque muito pouca luz das galáxias é capaz de atingir essas regiões e torná-las transparentes. Crédito: Colaboração TNG

Os astrônomos da Universidade da Califórnia, incluindo três da UCLA, resolveram um mistério sobre o universo primitivo e suas primeiras galáxias. Os astrônomos sabem que há mais de 12 bilhões de anos, cerca de 1 bilhão de anos após o Big Bang, o gás no espaço profundo era, em média, muito mais opaco do que é agora em algumas regiões, embora a opacidade variasse de lugar para lugar. Mas eles não tinham certeza sobre o que causou essas variações.

Para saber por que as diferenças ocorreram, os astrônomos usaram um dos maiores telescópios do mundo, o telescópio Subaru em Mauna Kea, no Havaí, para procurar galáxias de estrelas jovens em uma região  excepcionalmente grande do espaço – 500 milhões de anos-luz de diâmetro, sabia que o gás intergaláctico era extremamente opaco.

Se a região tivesse um número anormalmente pequeno de galáxias, os cientistas seriam capazes de concluir que a luz das estrelas não poderia penetrar tão longe quanto o esperado pelo gás intergaláctico; se tivesse um número extraordinariamente grande de galáxias, a implicação seria que a região havia esfriado significativamente ao longo das várias centenas de milhões de anos anteriores. (Ter poucas galáxias em uma região significaria não apenas que havia menos luz criada por essas galáxias, mas também que um gás ainda mais opaco estava sendo formado, de modo que a luz não poderia viajar tanto quanto os astrônomos esperavam.)

“Foi um caso raro na astronomia, onde dois modelos concorrentes, ambos convincentes à sua própria maneira, ofereceram previsões precisamente opostas, e tivemos sorte que essas previsões fossem testáveis”, disse Steven Furlanetto, professor de astronomia da Universidade da Califórnia. co-autor da pesquisa.

Os pesquisadores descobriram que a região contém muito menos galáxias do que o esperado – evidências claras de que a luz das estrelas não conseguiria passar. A escassez de galáxias pode ser a razão pela qual esta região é tão opaca. Não é que a opacidade seja a causa da falta de galáxias”, disse Furlanetto. “Em vez disso, é o contrário. Eles concluíram que, como o gás no espaço profundo é mantido transparente pela luz ultravioleta das galáxias, menos galáxias próximas podem torná-lo mais sombrio.

A pesquisa foi publicada no Astrophysical Journal .

Nos primeiros bilhões de anos após o Big Bang, a luz ultravioleta das primeiras galáxias encheu o universo de gás no espaço profundo. Isso teria ocorrido anteriormente em regiões com mais galáxias, concluíram os astrônomos. Os astrônomos planejam estudar ainda mais se o vazio e outros como ele irão revelar pistas sobre como as primeiras gerações de galáxias iluminaram o universo durante aquele período inicial.

Furlanetto disse que os astrônomos esperam que o estudo da interação de galáxias e gás no espaço profundo revele mais sobre como o ecossistema intergaláctico tomou forma durante esse período do início do universo.

A formação e evolução do Sistema Solar

A formação e evolução do Sistema Solar iniciou-se a cerca de 4,568 bilhões de anos com o colapso gravitacional de uma pequena parte de uma nuvem molecular. A maior parte da massa colapsada ficou no centro, formando o Sol, enquanto que o resto achatou, devido à força gravitacional, tornando-se num disco protoplanetário, que mais tarde viria a formar os planetas, luas, asteroides e outros corpos menores do sistema solar. 

Este modelo amplamente aceite, conhecido por hipótese nebular, foi desenvolvido no século XVIII por Emanuel Swedenborg, Immanuel Kant e Pierre Simon Laplace. O desenvolvimento desta teoria teve um grande impacto noutras disciplinas científicas, como a astronomia, física, geologia e planetologia. Desde o início da era espacial na década de 50 e da descoberta de exoplanetas na década de 90, o modelo têm sido testado e melhorado para que possa explicar as novas observações.

O Sistema Solar evoluiu bastante desde o momento da sua formação. Muitas das luas se formaram a partir de discos circulares de poeira e gás, à volta dos planetas parceiros, enquanto que outras se pensa terem-se formado de forma independente e, mais tarde, foram capturadas por planetas. Há ainda quem defenda a hipótese de que algumas luas, tal como a da Terra, Lua, se formaram a partir de um grande impacto. 

As colisões entre corpos têm sempre ocorrido até ao presente e foram fundamentais para a evolução do Sistema Solar. As posições dos planetas foram várias vezes deslocadas, tendo estes mudado de lugar. Pensa-se agora que esta migração planetária seja responsável por grande parte da evolução inicial do Sistema Solar.

Daqui a cerca de 5 biliões de anos, o Sol irá arrefecer e expandir-se até muitas vezes o seu diâmetro atual (tornando-se uma gigante vermelha), antes de perder para o espaço as suas camadas exteriores numa nebulosa planetária e de deixar para trás os uns restos estelares conhecidos por anã branca. 

Num futuro muito distante, a passagem de estrelas, por ação da gravidade, irá moldar a sequência de planetas em redor do Sol. Alguns dos planetas serão destruídos, outros ejetados para o espaço interestelar. Finalmente, passados bilhões de anos, é provável que se encontre o Sol sem um dos corpos originais a orbitá-lo.
Fonte: cosmonouniverso
Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos