30 de maio de 2018

Meteorito antigo conta história da topografia de Marte

O meteorito marciano Northwest Africa (NWA) 7034, com a alcunha "Black Beauty", pesa aproximadamente 320 gramas.Crédito: NASA

Ao examinarem um antigo meteorito marciano que pousou no deserto do Saara, cientistas e colaboradores do LLNL (Lawrence Livermore National Laboratory) determinaram como e quando a divisão crustal topográfica e geofísica do Planeta Vermelho se formou. NWA (Northwest Africa) 7034 é o mais antigo meteorito marciano descoberto até à data, com aproximadamente 4,4 mil milhões de anos. O meteorito é uma brecha (contém uma variedade de rochas crustais que foram misturadas e depois sinterizadas por aquecimento) e é a única amostra de Marte com uma composição representativa da crosta média marciana. 

O meteorito forneceu aos investigadores uma oportunidade única para estudar a antiga crosta de Marte. A equipa aplicou um número de técnicas de datação radioisotópica para determinar que a divisão (ou dicotomia) entre os planaltos meridionais fortemente craterados do planeta e as planícies mais lisas das terras baixas do norte se formou antes da produção de NWA 7034 há 4,4 mil milhões de anos. Esta idade antiga é consistente com uma origem de impacto gigante para a dicotomia crustal. A pesquisa foi publicada na edição de 23 de maio da revista Science Advances.

"Se a dicotomia crustal marciana se formou como resultado de um impacto gigante, e os dados e modelos disponíveis sugerem que isso é provável, a história de NWA 7034 exige que se tenha formado muito cedo na história do planeta, há mais de 4,4 mil milhões de anos atrás," comenta o cosmoquímico Bill Cassata, do LLNL e autor principal do artigo. A dicotomia é um contraste forte entre o hemisfério sul e norte. A geografia dos dois hemisférios difere em elevação entre 1 e 3 km. A espessura média da crosta marciana é de 45 km, com 32 km nas terras baixas a norte e 58 km nas terras altas a sul. 

As terras baixas a norte compreendem cerca de um-terço da superfície de Marte e são relativamente planas. Os outros dois-terços da superfície marciana são as terras altas do hemisfério sul. A diferença em elevação entre os hemisférios é dramática (as terras altas são muito montanhosas e vulcânicas). Foram propostas três grandes hipóteses para a origem da dicotomia crustal: endógena (por processos no manto), impacto único ou múltiplos impactos. A equipa teve como objetivo determinar quando e como a dicotomia crustal se formou.

Com base em novas medições radioisotópicas e em conjunto com outros dados publicados, a equipa determinou que todas as rochas que eventualmente foram incorporadas na brecha NWA 7034 foram instaladas há cerca de 4,4 mil milhões de anos no "terreno da fonte" (a região de origem crustal a partir da qual os diferentes componentes rochosos são derivados). Os resultados mostram que este terreno foi submetido a um metamorfismo prolongado associado a uma grande pluma alimentada por um centro vulcânico há ~1,7 a 1,3 mil milhões de anos. As extensões areais de grandes centros vulcânicos alimentados com plumas em Marte têm milhares de quilómetros quadrados, e o terreno da fonte era provavelmente de tamanho comparável. 

Finalmente, mostraram que a rocha foi aglomerada há ~200 milhões de anos ou mais recentemente. Quando vistos em conjunto, os dados de NWA 7034 demonstraram que grandes terrenos vulcânicos sobreviveram a poucos quilómetros da superfície de Marte há mais de 4400 milhões de anos. Isto indica que a dicotomia se formou antes destes 4,4 mil milhões de anos, já que rochas próximas da superfície teriam sido enterradas ou destruídas pelo evento de formação da dicotomia.

"Este estudo multidisciplinar, combinando técnicas geoquímicas tradicionais e inovadoras, forneceu-nos algumas novas ideias sobre os principais processos que moldaram o jovem Marte," comenta Caroline Smith, diretora de Coleções de Ciências da Terra, principal curadora de meteoritos do Museu de História Natural e coautora do artigo.

Os resultados desta equipa têm implicações importantes para a compreensão de quando e como uma das características geológicas globais mais antigas e mais distintas de Marte foi formada.  Este estudo demonstra que os vários sistemas de datação radioisotópica, que são restabelecidos por diferentes processos metamórficos, podem ser usados para desvendar a história térmica de uma amostra ao longo de milhares de milhões de anos," concluiu Cassata.
Fonte: http://www.ccvalg.pt/astronomia/

Uma lupa para um pulsar

Astrônomos descobriram um pulsar que vem com sua própria lupa - cortesia de seu companheiro anão marrom que está sendo despedaçado.
O pulsar PSR B1957 + 20 é visto em segundo plano através da nuvem de gás que envolve seu companheiro estrela marrom anão. Mark A. Garlick / Instituto Dunlap de Astronomia e Astrofísica, Univ. de Toronto

Em um sistema a 6.500 anos-luz de distância, um pulsar e uma anã marrom dançam um dervixe cósmico, chicoteando um ao outro a cada nove horas. Sua dança não vai durar - além de seu feixe de ondas de rádio como um farol, o pulsar PSR B1957 + 20 está emitindo um vento feroz de partículas que está lentamente explodindo seu companheiro. Por essa razão, o pulsar ganhou o nome de “viúva negra”, depois das espécies de aranha que comem seu parceiro.  Mas antes que a refeição esteja completa, a anã marrom tem algo a nos oferecer: uma lupa que expõe o pulsar em detalhes incríveis.

O sistema inteiro é minúsculo: a anã marrom é do tamanho de Júpiter e o pulsar é apenas do tamanho de Manhattan; a distância que os separa é aproximadamente cinco vezes a distância entre a Terra e a Lua. Do ponto de vista da Terra, a anã marrom é grande o suficiente para eclipsar o pulsar por 40 minutos toda vez que eles circulam um ao outro.

É essa geometria afortunada que dá à anã marrom seu poder de ampliação. Se você já admirou os belos padrões de luz ao longo da costa, observou a luz se curvar à medida que passa pela água. Ondas na água concentram a luz solar para criar esses padrões de ondulação na areia. O casulo de plasma em torno da anã marrom tem um efeito similar no feixe do farol do pulsar - quando tudo se alinha exatamente à direita, vemos o pulso de ondas de rádio passar pelo plasma, que concentra a radiação.

Não era óbvio que isso deveria acontecer. Mas, em 2014, Robert Main (Universidade de Toronto) e seus colegas observaram uma órbita completa de 9,2 horas usando o telescópio de 305 metros William E. Gordon no Observatório de Arecibo. Pouco antes e logo após cada eclipse pulsar, eles viram os pulsos de rádio clarearem. Além disso, os pulsos se iluminaram de maneiras diferentes em freqüências diferentes, exatamente como esperado para um evento de lente.

“A outra coisa espetacular que acontece”, explica Main, “é que a emissão dos dois pólos do pulsar não é amplificada igualmente. Há momentos em que a emissão de um pólo é grandemente aumentada, enquanto o outro não é afetado ”.

Em outras palavras, a "lente" gasosa ao redor da anã marrom às vezes aumentava a emissão do pólo norte do pulsar e às vezes do pólo sul - resolvendo duas áreas de emissão a apenas 10 km (6 milhas) além de 6.500 anos-luz de distância. Isso equivale a resolver uma pulga na superfície de Plutão usando telescópios baseados na Terra. (Para referência, o New Horizons voou direto para Pluto e ainda conseguiu apenas 80 metros de largura!) A equipe publicou seus resultados na Nature .

Como Jason Hessels (Universidade de Amsterdã, Holanda) aponta em uma peça de acompanhamento , esta não é a primeira vez que os astrônomos viram as lentes de plasma. Outros exemplos incluem quasares distantes e o pulsar da Nebulosa do Caranguejo. No entanto, levou 30 anos entre a descoberta do PSR B1957 + 20 e a detecção de suas lentes. Tudo se resume ao aumento do poder de computação, argumenta Hessels, que permitiu aos astrônomos examinar as mudanças nas escalas de microssegundos em várias frequências de rádio. Ele conclui: “O futuro é brilhante para usar pulsares para iluminar o universo invisível”.
Fonte: http://www.skyandtelescope.com

Uma vizinhança superlotada

Brilhando intensamente a cerca de 160 000 anos-luz de distância da Terra, a Nebulosa da Tarântula é a estrutura mais impressionante da Grande Nuvem de Magalhães, uma galáxia satélite da nossa Via Láctea. O Telescópio de Rastreio do VLT, instalado no Observatório do Paranal do ESO, no Chile, observou esta região e os seus arredores ricos com extremo detalhe, revelando uma paisagem cósmica de aglomerados de estrelas, nuvens de gás brilhante e restos espalhados de explosões de supernovas. Trata-se da imagem mais nítida obtida até hoje de toda a região.
Aproveitando as capacidades do VST — VLT Survey Telescope, situado no Observatório do Paranal do ESO, no Chile, astrônomos capturaram esta nova imagem muito detalhada da Nebulosa da Tarântula e dos seus numerosos aglomerados estelares e nebulosas vizinhas. A Tarântula, também conhecida por 30 Doradus, é a região de formação estelar mais brilhante e energética do Grupo Local de galáxias.

A Nebulosa da Tarântula, no alto da imagem, tem uma dimensão de mais de 1000 anos-luz e situa-se na direção da constelação do Dourado, no céu austral. Esta bela nebulosa faz parte da Grande Nuvem de Magalhães, uma galáxia anã com 14 000 anos-luz de dimensão. A Grande Nuvem de Magalhães é a terceira galáxia mais próxima da Via Láctea, depois da Galáxia Elíptica Anã de Sagitário e da Galáxia Anã de Cão Maior.

No coração da Nebulosa da Tarântula situa-se um jovem aglomerado estelar gigante chamado NGC 2070, uma região com formação explosiva de estrelas cujo núcleo denso, R136, contém algumas mais estrelas mais massivas e luminosas que se conhecem. O intenso brilho da Nebulosa da Tarântula foi inicialmente observado e anotado pelo astrônomo francês Nicolas-Louis de Lacaille em 1751.

Outro aglomerado estelar na Nebulosa da Tarântula é o muito mais antigo Hodge 301, no qual se estima que pelo menos 40 estrelas tenham explodido sob a forma de supernovas, liberando gás para a região. Outro exemplo de um resto de supernova é a superbolha SNR N157B, que envolve o aglomerado estelar aberto NGC 2060. Este aglomerado foi inicialmente observado pelo astrônomo britânico John Herschel em 1836, usando um telescópio refletor de 18,6 polegadas no Cabo da Boa Esperança, África do Sul. Na periferia da Nebulosa da Tarântula, embaixo à direita, podemos ver a localização da famosa supernova SN 1987A.

Deslocando-nos para o lado esquerda da Nebulosa da Tarântula, podemos ver ainda o brilhante aglomerado estelar aberto chamado NGC 2100, que mostra uma concentração brilhante de estrelas azuis rodeadas por estrelas vermelhas. Este aglomerado foi descoberto pelo astrônomo escocês James Dunlop em 1826, quando trabalhava na Austrália, usando um telescópio refletor de 23 cm construído por ele próprio.

No centro da imagem encontra-se o aglomerado estelar e nebulosa de emissão NGC 2074, outra região de formação de estrelas massivas descoberta por John Herschel. Olhando com mais atenção, podemos observar uma estrutura escura de poeira com uma forma semelhante a um cavalo marinho — o “Cavalo Marinho da Grande Nuvem de Magalhães”. Esta gigantesca estrutura em forma de pilar tem cerca de 20 anos-luz de dimensão — quase cinco vezes a distância entre o Sol e a sua estrela mais próxima, Alfa Centauri. Esta estrutura está condenada a desaparecer nos próximos milhões de anos, já que, à medida que mais estrelas se formam no aglomerado, a sua luz e ventos vão varrendo lentamente os pilares de poeira.

A obtenção desta imagem foi possível graças à câmera especial de 256 milhões de pixels do VST, a OmegaCAM. A imagem foi criada a partir de dados obtidos por esta câmera através de quatro filtros de cor diferentes, incluindo um concebido para isolar o brilho vermelho do hidrogênio ionizado.
Fonte: ESO
Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos