30 de agosto de 2018

Acelerador de antimatéria promete deixar LHC no chinelo


Simulação de um grupo de pósitrons - antimatéria do elétron - sendo produzido e acelerado. [Imagem: Aakash A. Sahai - 10.1103/PhysRevAccelBeams.21.081301]

Mini-acelerador de antimatéria 

Aakash Sahai, um físico do Imperial College de Londres, descobriu uma maneira de acelerar a antimatéria em um espaço de centímetros, em lugar dos quilômetros dos aceleradores atuais de matéria, o que promete fomentar não apenas a ciência das partículas exóticas, como também vislumbrar fenômenos de uma "nova física".

A nova técnica poderá ser usada para investigar mistérios como as propriedades do bóson de Higgs, ou a natureza das hipotéticas matéria escura e energia escura, além de fornecer testes mais sensíveis para materiais usados em aviões e chips de computador.

Os aceleradores de partículas como o LHC (Large Hadron Collider), na fronteira entre a Suíça e a França, e o LCLS (Linac Coherent Light Source), nos Estados Unidos, aceleram partículas elementares de matéria, como prótons e elétrons.

Essas partículas aceleradas podem ser postas para colidir, como no LHC, para se quebrarem e produzir partículas mais elementares, como o bóson de Higgs, que dá massa a todas as outras partículas. Elas também podem ser usadas para gerar luz laser de raios X, como no LCLS, luz esta que é usada para fazer imagens de processos extremamente rápidos e pequenos, como a fotossíntese.

No entanto, para chegar às altas velocidades necessárias, os aceleradores precisam usar equipamentos com pelo menos dois quilômetros de extensão - o LHC tem 27 km de circunferência. Por isso tem havido um interesse crescente na construção de mini-aceleradores de partículas, que possam fazer o mesmo trabalho a um custo menor.

Feixes de antimatéria

Agora, Sahai inventou um método de acelerar não partículas de matéria, mas a versão de antimatéria dos elétrons - os pósitrons - em um sistema que teria apenas alguns centímetros de comprimento.

A técnica de aceleração de antimatéria usa lasers e plasma - um gás de partículas carregadas - para produzir, concentrar e acelerar os pósitrons, criando um feixe concentrado de antimatéria. Esse acelerador em escala centimétrica poderia usar os lasers já existentes para acelerar feixes de pósitrons com dezenas de milhões de partículas até a mesma faixa de energia alcançada com o acelerador LCLS, de dois quilômetros.

A colisão de feixes de elétrons e de pósitrons pode ter implicações importantes para a física fundamental. Por exemplo, essas colisões podem eventualmente criar uma taxa mais alta de bósons de Higgs do que o LHC, permitindo que os físicos estudassem melhor suas propriedades. Elas também poderão ser usadas para procurar novas partículas propostas por uma teoria chamada "supersimetria", que preencheria algumas lacunas no Modelo Padrão da física de partículas, mas que não deram as caras no LHC até agora.

Os feixes de pósitrons também teriam aplicações práticas. Atualmente, ao verificar falhas e riscos de fratura em materiais como peças de aeronaves, lâminas de motores a jato e chips de computador, são tipicamente usados raios X ou feixes de elétrons. Os pósitrons interagem de maneira diferente com esses materiais, proporcionando outra dimensão ao processo de controle de qualidade.

A técnica foi modelada usando as propriedades dos lasers já existentes, e agora Sahai está formando uma equipe para testá-la em experimentos reais. Se tudo funcionar como previsto, a tecnologia poderá permitir que muitos laboratórios ao redor do mundo realizem experimentos de aceleração de antimatéria.
Acelerador de antimatéria promete deixar LHC no chinelo

Esquema do acelerador de antimatéria, que terá apenas alguns centímetros de comprimento. [Imagem: Aakash A. Sahai - 10.1103/PhysRevAccelBeams.21.081301]

Acelerador de antimatéria 

O acelerador vai exigir um tipo de sistema de laser que atualmente cobre cerca de 25 metros quadrados, mas que já está presente em muitos laboratórios de física em todo o mundo. As tecnologias usadas em instalações como o LHC ou o LCLS não sofreram avanços significativos desde sua invenção na década de 1950. Eles são caros para serem operados, e pode ser que em breve tenhamos tudo o que é possível conseguir com eles.

"Uma nova geração de aceleradores de partículas elusivas - compactos, de alta energia e baratos - nos permitiria investigar a nova física - e permitir que muitos mais laboratórios ao redor do mundo se unam ao esforço.

"Com este novo método acelerador poderíamos reduzir drasticamente o tamanho e o custo da aceleração de antimatéria. O que hoje só é possível fazer usando grandes instalações de física, a custos de dezenas de milhões de dólares, pode ser possível em laboratórios de física comuns," justificou Sahai.
Fonte: Inovação Tecnológica

Mapa da densidade estelar


Mapa 3D focado num tipo particular de objeto: estrelas OB, as estrelas mais quentes, mais brilhantes e mais massivas da nossa Galáxia.Crédito: Galaxy Map/K. Jardine

O segundo lançamento de dados da missão Gaia da ESA, realizado em abril, marcou um ponto de viragem no estudo da nossa casa galáctica, a Via Láctea. Com um catálogo sem precedentes de posições 3D e movimentos 2D de mais mil milhões de estrelas, além de informações adicionais sobre subconjuntos menores de estrelas e outras fontes celestes, Gaia forneceu aos astrónomos um recurso surpreendente para explorar a distribuição e composição da Galáxia e investigar a sua evolução passada e futura.

A maioria das estrelas na Via Láctea está localizada no disco Galáctico, que tem uma forma achatada, caracterizada por um padrão de braços espirais, semelhante ao observado em galáxias espirais além da nossa. No entanto, é particularmente difícil reconstruir a distribuição de estrelas no disco e, especialmente, o design dos braços da Via Láctea, devido à nossa posição dentro do próprio disco.

É aqui que as medições do Gaia podem fazer a diferença.

Esta imagem mostra um mapa 3D que está focado num tipo particular de objeto: estrelas OB, as estrelas mais quentes, mais brilhantes e mais massivas da nossa Galáxia. Como estas estrelas têm vidas relativamente curtas - até algumas dezenas de milhões de anos – encontram-se principalmente perto dos seus locais de formação no disco galáctico. Como tal, podem ser usadas para traçar a distribuição geral de estrelas jovens, locais de formação estelar e braços espirais da Galáxia.

O mapa, que se baseia em 400.000 estrelas deste tipo, a menos de 10.000 anos-luz do Sol, foi criado por Kevin Jardine, um programador informático e astrónomo amador com interesse em cartografar a Via Láctea, e que utiliza uma variedade de dados astronómicos.

Está centrado no Sol e mostra o disco galáctico como se estivéssemos a olhar para ele de um ponto de vista fora da Galáxia.

Para lidar com o enorme número de estrelas no catálogo de Gaia, Kevin utilizou a chamada isosuperfície de densidade, uma técnica que é usada rotineiramente em muitas aplicações práticas, por exemplo, para visualizar o tecido dos órgãos dos ossos em tomografias computadorizadas do corpo humano. Nesta técnica, a distribuição 3D de pontos individuais é representada em termos de uma ou mais superfícies lisas que delimitam regiões com uma densidade de pontos diferente.

Aqui, regiões do disco galáctico são mostradas com cores diferentes, dependendo da densidade de estrelas ionizantes anotadas pelo Gaia; estas são as mais quentes entre as estrelas OB, brilhando com a radiação ultravioleta que retira os eletrões dos átomos de hidrogénio para lhes dar o seu estado ionizado.

As regiões com maior densidade destas estrelas são exibidas em tons rosa/roxo, regiões com densidade intermédia em violeta/azul claro, e regiões de baixa densidade em azul escuro. Informações adicionais de outras pesquisas astronómicas foram também usadas para cartografar as concentrações de poeira interestelar, mostradas em verde, enquanto nuvens conhecidas de gás ionizado estão representadas como esferas vermelhas.

O aparecimento de "raios" é uma combinação de nuvens de poeira que bloqueiam a visão das estrelas por trás delas e um efeito de alongamento da distribuição de estrelas ao longo da linha de visão.

Uma versão interativa deste mapa está também disponível como parte do Gaia Sky, um programa informático de visualização em astronomia 3D, em tempo real, que foi desenvolvido no âmbito da missão Gaia no Astronomisches Rechen-Institut, Universidade de Heidelberg, Alemanha.
Fonte: http://www.ccvalg.pt/astronomia

Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos