21 de junho de 2018

VLT testa teoria da relatividade geral de Einstein fora da Via Láctea

Com o auxílio do instrumento MUSE montado no Very Large Telescope do ESO, no Chile, e do Telescópio Espacial Hubble da NASA/ESA, astrônomos fizeram o teste mais preciso até hoje da teoria da relatividade geral de Einstein fora da Via Láctea. A galáxia próxima ESO 325-G004 atua como uma forte lente gravitacional, distorcendo a luz emitida por uma galáxia distante situada atrás dela e dando origem a um anel de Einstein em torno do seu centro. Ao comparar a massa de ESO 325-G004 com a curvatura do espaço em sua volta, os astrônomos descobriram que a gravidade nestas escalas astronômicas se comporta como previsto pela relatividade geral, eliminando assim algumas teorias de gravidade alternativas.

Com o auxílio do instrumento MUSE montado no VLT do ESO, uma equipe liderada por Thomas Collett, da Universidade de Portsmouth no Reino Unido, calculou a massa da galáxia ESO 325-G004 ao medir o movimento das estrelas nesta galáxia elíptica próxima.

Collett explica “Usamos dados obtidos pelo Very Large Telescope do ESO, no Chile, para medir quão rapidamente as estrelas estavam se movendo em ESO 325-G004, o que nos permitiu inferir a quantidade de massa que deve existir na galáxia para manter estas estrelas em órbita. Por outro lado, a equipe conseguiu também medir outro aspecto da gravidade. Com o Telescópio Espacial Hubble da NASA/ESA, observou-se um anel de Einstein, um fenômeno que resulta da luz de uma galáxia distante estar sendo distorcida por ESO 325-G004. A observação deste anel permitiu aos astrônomos medir que quantidade de luz, e consequentemente espaço-tempo, está sendo distorcida pela enorme massa de ESO 325-G004.

A teoria da relatividade geral de Einstein prevê que os objetos deformem o espaço-tempo à sua volta, fazendo com que a luz que passa por ele seja desviada e dando origem a um fenômeno conhecido por lente gravitacional. Este efeito apenas se torna evidente para objetos muito massivos. São conhecidas algumas centenas de lentes gravitacionais fortes, mas muitas estão demasiado distantes para se medir com precisão as suas massas. No entanto, a galáxia ESO 325-G004 constitui uma das lentes mais próximas de nós, situada a apenas 450 milhões de anos-luz de distância da Terra.

Collett continua “Com dados obtidos pelo MUSE determinamos a massa da galáxia situada em primeiro plano e com o Hubble medimos a quantidade de efeito de lente gravitacional observado. Em seguida comparamos estas duas maneiras de medir a força da gravidade — e o resultado foi exatamente o previsto pela relatividade geral, com uma incerteza de apenas 9%. Trata-se do teste da relatividade geral fora da Via Láctea mais preciso realizado até hoje. E usamos apenas uma galáxia!”

Em 1998 descobriu-se que o Universo está expandindo mais depressa atualmente do que o que acontecia no passado.  Esta descoberta surpreendente pode ser explicada somente se o Universo for essencialmente composto um por componente exótico chamado energia escura. No entanto, esta interpretação apoia-se no fato da relatividade geral ser a teoria da gravidade correta a escalas cosmológicas. A relatividade geral foi testada com muita precisão nas escalas do Sistema Solar e alguns trabalhos observaram estrelas no centro da Via Láctea, mas até agora não tinha havido testes precisos para escalas astronômicas maiores. Testar o longo alcance das propriedades da gravidade é vital para validar o atual modelo cosmológico.

Esta descoberta pode ter implicações importantes para os modelos de gravidade alternativos à relatividade geral, que também foram evocados para explicar a expansão acelerada do Universo. Estas teorias alternativas prevêem que os efeitos da gravidade na curvatura do espaço-tempo são “dependentes da escala”, o que significa que a gravidade se comportaria de modo diferente a escalas astronômicas diferentes.

Collett e a sua equipe descobriram que este não é muito provavelmente o caso, a menos que estas diferenças ocorram apenas a escalas maiores que 6000 anos-luz. O Universo é um lugar espantoso, dando-nos acesso a estas lentes gravitacionais que podemos usar como laboratórios,” acrescenta o membro da equipe Bob Nichol da Universidade de Portsmouth. “É extremamente satisfatório usar os melhores telescópios do mundo para desafiar Einstein e descobrir que afinal ele tinha razão.” 
Fonte: ESO

Planeta 9: novo objeto descoberto no sistema solar sugere que ele existe mesmo

Os astrônomos especulam há alguns anos que um nono planeta pode orbitar nosso astro-rei a uma grande distância, na fronteira do sistema solar. Embora não tenhamos encontrado evidências diretas de tal planeta ainda, mais uma descoberta fornece provas indiretas de sua existência.

Recentemente, os cientistas analisaram um objeto planetário com uma órbita incomum, chamado 2015 BP519, que apoia o caso de um nono planeta não descoberto. 2015 BP519 pode ser tão grande quando um planeta-anão e orbita o sol em um ângulo de 54 graus em comparação com quase tudo no sistema solar interior. Uma das principais teorias para explicar isso é que o Planeta Nove é responsável por tal desvio.

Influência gravitacional

A caçada pelo “Planeta Nove” começou em 2016. Enquanto os pesquisadores observavam um punhado de objetos distantes no sistema solar, perceberam algo estranho: todos eles, mais longes do sol que Plutão, orbitavam a estrela em um ângulo distinto diferente dos planetas internos. As observações sugeriam que a influência gravitacional de um nono planeta estaria alterando as órbitas desses objetos distantes – da mesma forma que pode estar alterando a do objeto 2015 BP519.

Se o Planeta Nove realmente existe, é apenas uma questão de tempo até o encontrarmos. A tarefa não é das mais fáceis, no entanto, principalmente por causa de sua distância. O Planeta Nove é provavelmente várias vezes mais distante do sol que Plutão, o que significa que é apenas um ponto até mesmo para os nossos telescópios mais poderosos, além de ser escuro. Não ajuda em nada o fato de não sabermos exatamente onde fica.

Ainda assim, se estiver por aí, vamos nos deparar com ele eventualmente.
Fonte: https://hypescience.com
 [PMQuanta]

Os enxames globulares podem ser 4 bilhões de anos mais jovens do que se pensava


Evolução de um sistema binário no interior de um enxame globular.
Crédito: Mark A. Garlick/Universidade de Warwick

Segundo uma nova pesquisa liderada pela Universidade de Warwick, os enxames globulares podem ser até 4 bilhões de anos mais jovens do que se pensava. Compostos por centenas de milhares de estrelas densamente agrupadas numa esfera compacta, os aglomerados globulares eram considerados quase tão antigos quanto o próprio Universo - mas, graças a modelos de investigação recentemente desenvolvidos, foi demonstrado que podem ter 9 bilhões de anos em vez de 13 bilhões.

A descoberta põe em questão as teorias atuais sobre como as galáxias, incluindo a Via Láctea, foram formadas, pois os enxames globulares eram considerados quase tão antigos quanto o próprio Universo. Pensa-se que existam, só na nossa Galáxia, entre 150 e 180 enxames globulares. Projetados para reconsiderar a evolução das estrelas, os novos modelos BPASS (Binary Population and Spectral Synthesis) levam em conta os detalhes da evolução de estrelas binárias dentro do enxame globular e são usados para explorar as cores da luz das antigas populações de estrelas duplas - bem como os traços de elementos químicos vistos nos seus espectros.

O processo evolucionário vê duas estrelas a interagir num sistema binário, onde uma se expande para gigante enquanto a força gravitacional da estrela mais pequena remove a sua atmosfera, composta por hidrogênio e hélio, entre outros elementos. Pensa-se que estas estrelas se formaram ao mesmo tempo que o próprio enxame. Usando os modelos BPASS e calculando a idade dos sistemas estelares binários, os cientistas foram capazes de demonstrar que o enxame globular do qual fazem parte não era tão antigo quanto outros modelos sugeriram.

Os modelos BPASS, desenvolvidos em colaboração com o Dr. JJ Eldridge da Universidade de Auckland, já se haviam mostrado eficazes na exploração das propriedades de populações estelares jovens em ambientes que vão desde a nossa Via Láctea até ao limite do Universo. Discutindo os modelos BPASS e as suas descobertas, a Dra. Elizabeth Stanway, do Grupo de Astronomia e Astrofísica da Universidade de Warwick, investigadora principal destes achados, comenta:

"A determinação das idades das estrelas esteve sempre dependente da comparação das observações com os modelos que encapsulam a nossa compreensão de como as estrelas se formam e evoluem. Essa compreensão tem mudado ao longo do tempo e estamos cada vez mais conscientes dos efeitos da multiplicidade estelar - as interações entre as estrelas e as suas companheiras binárias e terciárias."

A Dra. Stanway sugere que as descobertas deste estudo apontam para novas avenidas de investigação sobre como as galáxias massivas e as estrelas aí contidas se formam:

"É importante notar que ainda há muito trabalho a fazer - em particular, olhar para os sistemas muito próximos, onde podemos resolver estrelas individuais em vez de apenas considerar a luz integrada de um enxame - mas este é um resultado interessante e intrigante.  A ser verdade, muda a nossa imagem dos estágios iniciais da evolução das galáxias e o local onde as estrelas que acabaram nas galáxias massivas de hoje, como a Via Láctea, podem ter-se formado. 

O nosso objetivo é continuar esta investigação, explorando tanto as melhorias na modelagem como as previsões observáveis que delas podem surgir."

O artigo científico foi aceito para publicação pela revista Monthly Notices of the Royal Astronomical Society e está disponível online.

FONTE: ASTRONOMIA ONLINE

Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos