18 de março de 2013

Cientistas caçam estranha antimatéria no manto da Terra

Cientistas identificaram provisoriamente várias partículas no fundo do manto da Terra, que poderiam revelar quanto calor o planeta produz e confirmar se a Terra se formou a partir de materiais vindos do sol. As partículas são chamadas de geoneutrinos, ou antimatérias de neutrinos (partículas exóticas fundamentais que podem passar através da Terra), que se formam no fundo do manto da Terra.
 

Geoneutrinos

Cada partícula de matéria tem uma partícula de antimatéria correspondente, que é idêntica, mas tem uma carga oposta. Quando as duas se encontram, aniquilam uma a outra. Quando a Terra se formou, os elementos radioativos tório e urânio foram distribuídos no interior do planeta em concentrações diferentes na crosta (camada mais externa da Terra) e no manto. Conforme esses elementos decaem radioativamente dentro do manto, emitem calor e formam partículas subatômicas conhecidas como geoneutrinos. O calor formado a partir dessa decadência é o motor que impulsiona o movimento do material viscoso que forma o manto da Terra.

Esse movimento, por sua vez, pode afetar as placas tectônicas, causando terremotos. Os cientistas têm modelos para prever quanto calor é gerado no interior da Terra, mas a medição se provou complicada. Isso se deve, em parte, ao fato de que o manto está quilômetros abaixo da superfície da Terra, por isso, “se você quiser entender quanto calor é produzido por esses elementos radioativos, a única maneira é através dos geoneutrinos”, explicou um coautor do estudo, Aldo Ianni, físico do Laboratório Nacional de Gran Sasso, na Itália.
 

A pesquisa

Para fazer isso, os pesquisadores do laboratório subterrâneo de Gran Sasso, que está a quase 1,6 km abaixo de uma montanha na Itália, procuraram por sinais em uma vasta piscina de líquido a base de óleo que cintila, ou produz flashes de luz quando partículas como prótons passam através dele. Quando geoneutrinos passam pelo líquido cintilante, se chocam com os prótons e emitem um pósitron e um nêutron, criando um sinal distintivo. Muitas das partículas que os cientistas identificaram inicialmente na verdade vieram de reatores nucleares de usinas próximas. Mas através da medição dos níveis de energia dos neutrinos, eles puderam isolar os 30% que vieram do manto da Terra. Os geoneutrinos são criados a partir do decaimento radioativo do tório e urânio em uma reação que libera uma quantidade conhecida de calor.

Como resultado, a frequência com que os pesquisadores encontram essas partículas pode revelar a quantidade de elementos radioativos à espreita no manto da Terra, e por sua vez a quantidade de calor que geram. Isso pode ajudar os cientistas a aperfeiçoar seus conhecimentos das placas tectônicas. E também pode confirmar a teoria de que a Terra se formou a partir do sol, de acordo com Ianni. Meteoritos que vêm da história primitiva do sistema solar contêm proporções distintas de urânio e tório que espelham a composição da superfície do sol. Ao comparar essa relação com a quantidade encontrada no interior da Terra, os pesquisadores podem confirmar as origens solares do planeta.
Fonte: Hypescience.com
[LiveScience]

Sondas exploram remanescente de supernova

© NASA (imagem composta da remanescente de supernova)
 
Enquanto realiza sua extensiva pesquisa por fontes de raios X nas regiões centrais da galáxia, o satélite Swift da NASA descobriu a até então desconhecida remanescente de uma estrela destruída. Designada G306.3-0.9 depois que as suas coordenadas na posição do céu foram definidas, o novo objeto aparece entre uma das remanescentes supernovas mais jovens conhecidas na Via Láctea. Os astrônomos anteriormente catalogaram mais de 300 remanescentes de supernovas na galáxia. As novas análises indicam que a G306.3-0.9 tem provavelmente menos de 2.500 anos de idade, fazendo dela uma das 20 remanescentes mais jovens já identificadas. A imagem composta acima da remanescente de supernova G306.3-0.9 funde observações feitas com o Chandra em raios X (azul), com dados adquiridos pelo telescópio espacial Spitzer em infravermelho (vermelho e ciano) e observações feitas com o Australia Telescope Compact Array em rádio (roxo). A imagem tem 20 arcos de minuto de diâmetro, que corresponde a 150 anos-luz na distância estimada para a remanescente.
 
Os astrônomos estimam que uma explosão de supernova ocorra uma ou duas vezes por século na Via Láctea. A onda de expansão da explosão e os detritos estelares quentes vagarosamente se dissipam por centenas de milhares de anos, eventualmente se misturando com o gás do meio interestelar se tornando indistinguíveis. A jovem remanescente de supernova fornece a melhor oportunidade para entender a natureza da estrela original e os detalhes de sua destruição. As remanescentes de supernovas emitem energia através do espectro eletromagnético, desde as ondas de rádio até os raios gama, e pistas importantes podem ser encontradas em cada banda de energia. As observações de raios X revelam o movimento dos detritos em expansão, seu conteúdo químico, e a sua interação com o ambiente interestelar, mas a remanescente de supernova se apaga na região dos raios X depois de aproximadamente 10.000 anos. Na verdade, somente metade das remanescentes de supernovas conhecidas na Via Láctea foi detectada em raios X.
 
O Swift Galactic Plane Survey é um projeto para imagear uma faixa de dois graus de largura ao longo do plano central da Via Láctea nas energias de raios X e ultravioleta, ao mesmo tempo. O imageamento começou em 2011 e espera-se que seja completado na metade deste ano. A pesquisa realizada pelo Swift aproveita o imageamento previamente compilado pelo telescópio espacial Spitzer da NASA e estende essa pesquisa para energias maiores. As pesquisas de raios X e infravermelho se complementam, pois a luz nessas energias penetra as nuvens de poeira do plano galáctico, enquanto que a pesquisa em ultravioleta da região é a primeira já realizada. Em 22 de fevereiro de 2011, o Swift imageou um campo de pesquisa perto da borda sul da constelação de Centaurus. Embora nada incomum tivesse aparecido na exposição ultravioleta, as imagens em raios X revelaram uma fonte estendida, semi-circular parecida com uma remanescente de supernova.
 
Uma análise nos dados de arquivo revelaram detalhes nas imagens infravermelhas do Spitzer e nos dados de rádio do Molonglo Observatory Synthesis Telescope na Austrália. A investigação posterior do objeto feita pela equipe usou 83 minutos de exposição do observatório de raios X Chandra e observações adicionais de rádio feitas com o Australia Telescope Compact Array. Considerando uma distância estimada de 26.000 anos-luz para a G306.3-0.9, calcula-se que a onda de choque da explosão está correndo pelo espaço a uma velocidade de 2,4 milhões de quilômetros por hora. As observações feitas com o Chandra revelam a presença de ferro, neônio, sílica e enxofre em temperaturas superiores a 28 milhões de graus Celsius, uma lembrança não somente da energia envolvida, mas da função das supernovas em semear a galáxia com elementos pesados produzidos no coração das estrelas massivas. Um artigo descrevendo os achados da equipe estará numa próxima edição do The Astrophysical Journal.
Fonte: NASA

Bóson de Higgs finalmente foi confirmado

Em 4 de julho de 2012, duas equipes de cientistas que trabalham de forma independente no acelerador de partículas Grande Colisor de Hádrons (LHC, na sigla em inglês) anunciaram o resultado de suas pesquisas: a observação do que parecia ser um novo tipo de partícula. Tais resultados iniciais indicavam tratar-se do bóson de Higgs. Parte do Modelo Padrão de partículas da física, o bóson de Higgs seria a partícula elementar do campo de Higgs, que confere massa às demais partículas. O anúncio da descoberta de um bóson que podia ser o de Higgs era promissor, porém, mais análises eram necessárias para confirmar que a nova partícula realmente era o parecia. Agora, na Conferência Moriond, na Itália, as mesmas equipes anunciaram o resultado da análise de um volume maior de dados (duas vezes e meia maior), e determinaram que a partícula é, de fato, o bóson de Higgs. Eles chegaram à esta conclusão analisando como a partícula interage com outras e quais suas propriedades quânticas. Mas o trabalho ainda não terminou.
 
Existem várias teorias que preveem bósons de Higgs ligeiramente diferentes. O próximo passo é determinar qual modelo corresponde a partícula encontrada, se é o modelo padrão ou algum modelo que vai além dele. Para isto, os cientistas terão que observar o máximo de decaimento de bósons de Higgs, para ver em que partículas eles decaem. Serão necessários mais testes que poderão levar bastante tempo. Quanto tempo? A detecção de bósons acontece uma vez a cada um trilhão de colisões de prótons. Por enquanto, com o que se sabe do bóson, ele pode significar o fim do universo no futuro distante. A massa do bóson de Higgs é uma parte importante de um cálculo que determina o futuro do espaço e do tempo. A massa encontrada, 126 vezes a massa do próton, está com o valor necessário para criar um universo fundamentalmente instável, que sofrerá um cataclisma em algumas dezenas de bilhões de anos. Pode ser que o universo em que vivemos seja inerentemente instável, e em algum ponto daqui a bilhões de anos tudo será apagado”, comentou Joseph Lykken, físico teórico do Laboratório do Acelerador Nacional Fermi, em Batavia, Illinois, EUA, um dos colaboradores do experimento.
Fonte: Hypescience.com

Estrelas binárias propiciam vida em planetas de sua órbita

Planetas orbitando sistemas estelares binários têm que lidar com os estresses de mais de uma estrela. Mas uma nova pesquisa revela que estrelas binárias próximas poderiam ser tão boas quanto estrelas únicas quando se trata de abrigar planetas habitáveis. Gêmeas de pouca massa poderiam ser as melhores hospedeiras, porque sua energia combinada estende a região habitável para além do que existiria ao redor de uma única estrela. Depois de modelar uma variedade de sistemas binários, dois astrônomos determinaram que estrelas com 80% da massa do Sol, se próximas o suficiente, poderiam permitir condições ideais para abrigar planetas habitáveis. “Potencialmente, a vida tem ainda mais chance de existir em sistemas binários do que em sistemas únicos”, contou Joni Clark, estudante de graduação da New Mexico State University à revista Astrobiology. Clark trabalhou com o astrofísico Paul Mason da University of Texasem El Paso.

Avançando os limites
Estrelas de pouca massa são de duas a três vezes mais comuns que o Sol. Há tantas delas que a probabilidade favorece chances maiores de abrigar planetas. Mas seu tamanho reduzido também significa que elas liberam mais radiação ultravioleta no início de suas vidas e ventos solares perigosos na zona habitável, duas coisas importantes em se tratando de manter um nicho para a existência da vida. Planetas devem ficar extremamente próximos de pequenas estrelas únicas para colher seus benefícios, uma posição que oferece vários desafios. Esses planetas têm uma tendência maior a ficarem presos por forças gravitacionais de maré, com um lado permanentemente virado para seu sol, e a sofrer fortemente os efeitos de qualquer atividade estelar. Mas quando duas estrelas assim formam um par próximo, sua energia combinada estende a região habitável e a torna maior, minimizando algumas das ameaças enfrentadas por planetas que orbitam estrelas de pouca massa.

“Assim temos muito mais espaço para os planetas”, observou Clark.

Mas nem todo sistema binário funciona. Zonas habitáveis recebem os melhores efeitos quando as estrelas de pouca massa estão próximas, circundando uma à outra a cada dez dias ou menos. Todos os tipos de radiação provenientes de duas estrelas tão próximas seriam mais consistentes, e os planetas que as orbitam se pareceriam com um planeta orbitando uma estrela única. Mas quando as estrelas estão distantes, é mais provável que a órbita do planeta seja instável, já que ele está sujeita ao arrasto gravitacional com mais intensidade, primeiro de uma estrela e depois da outra. Quando as estrelas ficam separadas, planetas em órbita passariam por mudanças significativas de temperatura. Com uma distância grande o suficiente, planetas só orbitariam uma estrela, com a possibilidade de ocasionalmente entrarem na zona de perigo da outra.

“Há muitas regiões ao redor de sistemas binários em que uma órbita estável simplesmente não é possível”, explica Stephen Kane, do Instituto de Tecnologia da Califórnia. Kane, que estuda as zonas habitáveis de planetas que orbitam estrelas binárias, não envolvidoeu na pesquisa de Clark e Mason.
 
Condições de vida
As condições de vida nos planetas variariam com base na cobertura de nuvens, que poderia ajudar a isolar o planeta e a protegê-lo da radiação ultravioleta. Essa cobertura de nuvens poderia ajudar a proteger o planeta das mudanças que ele sofreria quando sua órbita o levasse primeiro para perto de uma estrela, e depois da outra. A variação da temperatura na superfície do planeta dependeria das propriedades da atmosfera e de sua capacidade de absorver esse fluxo e variação de temperatura”, explicou Kane.

Clark e Mason simularam vários sistemas binários próximos, calculando as temperaturas e radiação que poderiam existir para planetas em órbita durante a vida da estrela. Eles apresentaram seus resultados na reunião da American Astronomical Societyem janeiro. Depoisde levar em conta a cobertura de nuvens e o fluxo das estrelas, eles determinaram que as situações mais estáveis viriam de gêmeas binárias, estrelas com aproximadamente a mesma massa. Dessas, um par de estrelas com 80% da massa do Sol atingiria o que Clark chamou de “ponto ideal”, ainda que vários tipos de gêmeas e outras combinações especiais também funcionassem bem. No caso de estrelas gêmeas próximas, “como elas têm massas semelhantes e estão tão próximas, é muito provável que tenham nascido ao mesmo tempo”, compara Clark

Essas estrelas teriam tempos de vida semelhantes, extinguindo-se aproximadamente ao mesmo tempo, mas com uma zona habitável 40% mais longa que suas contrapartes solitárias. No caso de estrelas de pouca massa, esses períodos poderiam superar em muito o tempo de vida do Sol, durando até 20 bilhões de anos. Outros grupos recentemente mostraram que planetas próximos de estrelas de qualquer tipo sofrem perda de água, como Vênus, e erosão atmosférica, principalmente no início da vida da estrela. Esses efeitos podem ocorrer mesmo em planetas que contam com a proteção de um campo magnético”, observa Mason. “A beleza de binárias próximas é que suas zonas habitáveis ficam muito distantes.

Sistema Tatooine
Kepler-47 fornece um sistema diferente com propriedades fascinantes. Em vez de gêmeas, o famoso sistema “Tatooine” contém uma estrela tão massiva quanto o Sol, e outra com apenas um terço desse tamanho. Um único planeta orbita a zona habitável, apesar de ser massivo demais para ser considerado um bom candidato para a vida. Eventualmente, a estrela maior terá o mesmo destino de nosso Sol, expandindo-se até se tornar uma gigante vermelha massiva e mudando a chance de sobrevivência de planetas que orbitam o par. A estrela menor continuaria vivendo, mas isso é pouco confortante para os planetas que sofreram mudanças em suas regiões habitáveis. Mesmo assim, durante o tempo de vida da estrela mais massiva, a estrela menor forneceria luz e calor extras que poderia ser um bônus para a vida em potencial.

De acordo com Clark e Mason, como estrelas de pouca massa são tão frequentes, e como a maioria das estrelas da galáxia fica em pares binários, as chances de encontrar binárias próximas de pouca massa é alta. Eles avisam que ainda não encontraram os números exatos, mas Mason acredita que esses sistemas “não sejam incomuns de maneira nenhuma”, e pode haver tantos pareamentos assim quanto há estrelas únicas como o Sol. “Posso imaginar que uma binária com 0,8 massas solares, com uma separação de menos de um décimo de uma unidade astronômica [a distância da Terra até o Sol], teria muitas possibilidades de órbitas estáveis dentro da zona habitável”, conclui Kane.
 
Créditos: Scientific American

Ecos de luz de V383 Monocerotis

Crédito da imagem: NASA, ESA, H. E. Bond (STScI)

O que causou essa explosão da V838 Mon? Por razões desconhecidas, a superfície externa da V838 Mon repentinamente se expandiu de maneira incrível de modo que com o resultado ela se tornou a estrela mais brilhante de toda a Via Láctea em Janeiro de 2002. Então, mais repentinamente ainda, ela se apagou. Um flash estelar como esse nunca tinha sido visto anteriormente, supernovas e novas expelem matéria para o espaço externo. Embora o flash da V838 Mon pareça estar expelindo material para o espaço, o que está se vendo na imagem acima, obtida pelo Telescópio Espacial Hubble é na verdade um movimento do eco de luz do flash brilhante. Em um eco de luz, a luz do flash é refletida de forma sucessiva por anéis cada vez mais distantes no complexo conjunto do ambiente de poeira interestelar que já circunda a estrela. A V838 Mon, localiza-se a aproximadamente 20000 anos-luz de distância da Terra, na direção da constelação de Monoceros, o Unicórnio, enquanto que o eco de luz acima se espalha por aproximadamente seis anos-luz de diâmetro.
Fonte: http://apod.nasa.gov/apod/ap130317.html

Fogo Cosmico

Localizada a aproximadamente 9000 anos-luz de distância, a NGC 3576 é uma gigantesca região de gás brilhante que tem aproximadamente 100 anos-luz de diâmetro, onde estrelas estão atualmente se formando. A intensa radiação e os ventos provenientes das estrelas massivas estão rasgando as nuvens originais de onde elas se formaram criando esse cenário no mínimo dramático. A área escura na parte central direita da imagem é assim escura graças a presença de nuvens de gás e poeira muito opacas. Os dados usados para gerar essa composição colorida foram obtidos pelo instrumento ISAAC montado no VLT, no arcabouço da proposta de observação 079.C-0203. A imagem foi processada por Yuri Beletsky do ESO e Hännes Heyer, também do ESO. A imagem final foi baseada em dados obtidos com 4 diferentes filtros de banda estreita ao redor de 1.21, 1.71, 2.09 e 3.28 mícron.
Fonte: http://www.wired.com

Um trio raro de quasares

Calar Alto Observatory (localização do trio de quasares)

Pela segunda vez na história, uma equipe de cientistas descobriu um sistema de quasar triplo extremamente raro. Os quasares são fontes extremamente brilhantes e poderosas de energia que ficam no centro de uma galáxia, em torno de um buraco negro. Em sistemas com múltiplos quasares, os corpos são mantidos juntos pela gravidade e acredita-se ser o produto de galáxias em colisão.   Os sistemas de quasar triplo são muito difícil de serem detectados, por causa dos limites de observação que impedem de diferenciar vários corpos próximos um do outro em distâncias astronômicas.

Além disso, tais fenômenos são consideradas muito raros. Ao combinar observações de vários telescópios e modelagem avançada, a equipe liderada por Emanuele Farina, da Universidade de Insubria na Itália foi capaz de encontrar o quasar triplo J1519 QQQ 0627.   A luz dos quasares já viajou 9 bilhões de anos-luz para chegar até a Terra, o que significa que a luz foi emitida quando o Universo tinha apenas um terço de sua idade atual. Análise avançada confirmou que foi encontrado realmente são três fontes distintas energia proveniente dos quasares.
 
 Dois dos membros do tripleto estão mais próximos entre si do que a terceiro. Isto significa que o sistema pode ter sido formado por interação entre os dois quasares adjacentes, mas não foi provocado provavelmente pela interação com o terceiro quasar mais distante.    Além disso, nenhuma prova foi vista de qualquer galáxia ultra-luminosa infravermelha, que é onde os quasares são comumente encontrados.

Como resultado, a equipe propõe que este sistema triplo de quasar é parte de alguma estrutura maior que ainda está em formação.    Por intermédio de observações e técnicas de modelagem para encontrar este raro fenômeno estelar ajudará a entender como estas estruturas cósmicas se formam em nosso Universo e os processos básicos pelos quais as galáxias massivas são geradas. Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.
Fonte: http://carnegiescience.edu/
Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos