5 de fevereiro de 2018

Planetas TRAPPIST-1 são provavelmente ricos em água

Primeira indicação da composição de exoplanetas do tamanho da Terra

Um novo estudo determinou que os sete planetas descobertos em órbita da estrela anã ultra fria próxima de nós TRAPPIST-1 são todos constituídos principalmente por rochas, e alguns poderão potencialmente ter mais água que a Terra. As densidades dos planetas, agora conhecidas com muito mais precisão que anteriormente, sugerem que alguns destes corpos podem ter até 5% da sua massa sob a forma de água — cerca de 250 vezes mais que os oceanos da Terra. Os planetas mais quentes mais próximos da estrela têm provavelmente atmosferas densas de vapor e os mais distantes terão provavelmente superfícies geladas. Em termos de tamanho, densidade e radiação recebida da estrela, o quarto planeta a contar do interior é o mais semelhante à Terra. Parece ser o mais rochoso dos sete e tem potencial para ter água líquida em sua superfície.

Os planetas que se encontram em órbita da tênue estrela vermelha TRAPPIST-1, situada a apenas 40 anos-luz de distância da Terra, foram inicialmente detectados em 2016 pelo telescópio TRAPPIST-South instalado no Observatório de La Silla do ESO. No ano seguinte observações adicionais obtidas com telescópios em solo, incluindo o Very Large Telescope do ESO, e com o Telescópio Espacial Spitzer da NASA, revelaram que existem sete planetas no sistema, cada um mais ou menos do tamanho da Terra. Este planetas receberam os nomes TRAPPIST-1b, c, d, e, f, g, h, por ordem crescente de distância à estrela central.

Agora foram obtidas mais observações, tanto por telescópios em solo, incluindo a infraestrutura SPECULOOS instalada no Observatório do Paranal do ESO, como pelos Telescópios Espaciais Spitzer e Kepler da NASA. Uma equipe de cientistas, liderada por Simon Grimm da Universidade de Berna, na Suíça, aplicou modelos computacionais muito complexos a todos os dados disponíveis e determinou as densidades dos planetas com muito mais precisão do que anteriormente.

Simon Grimm explica como é que são determinadas as massas dos planetas: “Os planetas TRAPPIST-1 estão tão próximos uns dos outros que interferem entre si gravitacionalmente, por isso os momentos em que passam em frente à sua estrela progenitora variam ligeiramente. Estas variações dependem das massas dos planetas, das suas distâncias e de outros parâmetros orbitais. Com um modelo de computador, simulamos as órbitas dos planetas até que os trânsitos calculados coincidissem com os valores observados, derivando assim as massas planetárias.”

O membro da equipe Eric Agol fala da importância deste resultado: “Um dos objetivos deste tipo de estudo é determinar a composição de planetas semelhantes à Terra em tamanho e temperatura. A descoberta da TRAPPIST-1 e as capacidades únicas das infraestruturas do ESO no Chile e do Telescópio Espacial Spitzer da NASA tornaram este estudo possível — dando assim o nosso primeiro vislumbre da composição de exoplanetas do tamanho da Terra!”

As medições das densidades, quando combinadas com modelos das composições dos planetas, sugerem que os sete planetas TRAPPIST-1 não são mundos rochosos estéreis. Parecem conter quantidades significativas  de materiais voláteis, provavelmente água, correspondente, em alguns casos, a 5% da massa do planeta — uma quantidade enorme quando comparada com a Terra que tem apenas cerca de 0,02% de água relativamente à sua massa!

“Embora nos dêem importantes pistas sobre a composição planetária, as densidades não nos dizem nada sobre a habitabilidade do planeta. Apesar disso, o nosso estudo constitui um importante passo em frente no sentido de determinarmos se estes planetas poderão suportar vida,” disse Brice-Olivier Demory, co-autor do estudo e que trabalha na Universidade de Berna.

TRAPPIST-1b e 1c — os planetas mais interiores — têm muito provavelmente núcleos rochosos e encontram-se rodeados por atmosferas muito mais espessas que a da Terra. TRAPPIST-1d é o planeta mais leve com cerca de 30% da massa da Terra. Os cientistas não sabem precisar se terá um grande atmosfera, um oceano ou uma camada de gelo.

Os pesquisadores ficaram surpreendidos por TRAPPIST-1e ser o único planeta do sistema ligeiramente mais denso que a Terra, o que sugere que possa ter um núcleo de ferro mais denso e que não tem necessariamente que possuir uma atmosfera espessa, um oceano ou uma camada de gelo. O fato de TRAPPIST-1e parecer ser muito mais rochoso em termos que composição que os demais planetas é algo que permanece um mistério. Em termos de tamanho, densidade e quantidade de radiação recebida da estrela, este é o planeta mais parecido com a Terra.

TRAPPIST-1f, g, h encontram-se suficientemente longe da estrela hospedeira para que a água esteja em forma de gelo em suas superfícies. Se possuirem atmosferas finas, provavelmente não conterão as moléculas pesadas que encontramos na Terra, como, por exemplo, dióxido de carbono. “É interessante notar que os planetas mais densos não são os que se encontram mais próximos da estrela e que os planetas mais frios podem não conter atmosferas densas,” diz Caroline Dorn, co-autora do estudo e que trabalha na Universidade de Zurique, na Suíça.

O sistema TRAPPIST-1 continuará a ser alvo de intenso escrutínio no futuro com muitas infraestruturas no solo e no espaço, incluindo o Extremely Large Telescope do ESO e o Telescópio Espacial James Webb da NASA/ESA/CSA.
Os astrônomos trabalham também intensamente para procurar mais planetas em torno de estrelas vermelhas e fracas como TRAPPIST-1. Como explica o membro da equipe Michaël Gillon: “Este resultado destaca o enorme interesse em explorar estrelas anãs ultra frias próximas — como TRAPPIST-1 — para procurar planetas terrestres em trânsito. É exatamente este o objetivo do SPECULOOS, o nosso novo caçador de exoplanetas que está prestes a começar as operações no Observatório do Paranal do ESO, no Chile.”
Fonte: ESO

Fusão de estrelas de nêutrons é muito mais louca do que os cientistas pensavam

Os astrofísicos achavam que sabiam o que acontecia após a colisão de duas estrelas de nêutrons. Isso até GW170817 os confundir completamente. Normalmente, uma fusão dessas leva a uma grande explosão. O que se espera de uma grande explosão? Que ela produza um flash brilhante, cuja luz diminui com o tempo. Certo?
Não no caso de GW170817 que, contrariamente às expectativas, continua a se iluminar meses após o evento. Um artigo sobre o fenômeno, estudado por uma equipe da Universidade McGill, no Canadá, foi publicado na revista Astrophysical Journal Letters.

A surpresa

De acordo com dados do Observatório de raios-X Chandra, da NASA, as consequências dessa colisão são muito mais complexas e interessantes do que os pesquisadores esperavam. Essa é a primeira vez que observamos diretamente uma colisão entre duas estrelas de nêutrons. Graças a avanços na detecção de ondas gravitacionais, os cientistas conseguiram apontar seus instrumentos espaciais a tempo de assistir o evento mais tarde nomeado GW170817, em agosto do ano passado. A fusão espetacular ocorreu a 138 milhões de anos-luz do sistema solar. 

Aprendemos muito sobre o fenômeno. Por exemplo, pudemos confirmar que as colisões entre estrelas de nêutrons produzem explosões de raios gama, um dos eventos mais brilhantes e energéticos do universo. Essa explosão de raios gama recebeu o nome de GRB170817A, e deveria se apagar relativamente rápido. Só que isso não aconteceu.

Novas medições

Dois dias após a colisão, nenhuma fonte óptica estava visível, o que está dentro do normal.
Nove dias após a colisão, os dados do Chandra revelaram uma nova fonte de raios-X no local da explosão.

“Geralmente, quando vemos uma pequena explosão de raios gama, a emissão de jatos gerada fica brilhante por um curto período de tempo e então desaparece”, explicou o astrofísico Daryl Haggard, da Universidade McGill.

A posição do objeto no céu era muito próxima do sol para medições sensíveis de raios-X, de forma que o mistério permaneceu por um tempo. Foi somente 109 após a colisão, no início de dezembro de 2017, que os astrônomos foram capazes de fazer novas leituras de GRB170817A, descobrindo que ele estava ainda mais brilhante do que no início de setembro.

Hipóteses

O brilho só pode ser explicado se a colisão das estrelas de nêutrons for um pouco mais complicada do que nós pensávamos inicialmente. Por exemplo, a colisão pode ter criado um buraco negro com um jato energético que está aquecendo o material em torno dele. Isso poderia explicar o brilho visto nos raios-X e nos espectros de rádio durante meses após o evento.

A curva de luz do raio-X corresponde a previsões para esta hipótese, embora a origem desse jato energético ainda seja incerta. Agora, os astrônomos possuem um novo desafio em mãos: tentar descobrir a causa e a física por trás desse surpreendente evento luminoso. GW170817 deve continuar sendo um dos objetos mais estudados no céu por algum tempo ainda.
Fonte: https://hypescience.com
 [ScienceAlert]

Maior simulação do Universo mostra cubo de 1 bilhão de anos-luz

Visualização da intensidade das ondas de choque no gás cósmico (azul) em torno de estruturas de matéria escura colapsadas (laranja/branco). Semelhante a um estrondo sônico, o gás nessas ondas de choque é acelerado ao impactar nos filamentos cósmicos e galáxias.[Imagem: IllustrisTNG collaboration]
Simulação do Universo
Saíram os resultados da maior simulação do Universo já feita, que utilizou novos métodos computacionais em relação às simulações feitas anteriormente. A simulação cobre uma porção do Universo equivalente a um cubo medindo 1 bilhão de anos-luz de aresta - o cubo da maior simulação anterior tinha 350 milhões de anos-luz. Foram utilizados 24.000 processadores rodando continuamente durante dois meses, resultando em mais de 500 terabytes de dados. A nova ferramenta, batizada de IllustrisTNG, congrega novas informações sobre como os buracos negros influenciam a distribuição da matéria escura - se é que ela existe mesmo -, como os elementos químicos pesados são produzidos e distribuídos em todo o cosmos e onde os campos magnéticos se originam.
Esta é uma fatia da estrutura cósmica. O brilho da imagem indica que a densidade de massa e a cor mostra a temperatura média do gás de matéria comum (bariônica). A região exibida se estende por cerca de 1,2 bilhão de ano-luz da esquerda para a direita. [Imagem: IllustrisTNG Collaboration]
"Quando nós observamos as galáxias usando um telescópio, só podemos medir determinadas quantidades," explica Shy Genel, do Flatiron Institute, nos EUA . "Com a simulação, podemos rastrear todas as propriedades para todas essas galáxias. E não apenas como a galáxia se parece agora, mas toda a sua história de formação. Isso pode mostrar como as galáxias evoluem, dando ideias, por exemplo, de como a Via Láctea era quando a Terra se formou e como nossa galáxia poderá mudar no futuro. Outro ganho foi a possibilidade plotar todas as observações sobre os campos magnéticos em larga escala que permeiam todo o Universo.
Renderização da velocidade do gás em uma fatia de 100 mil parsecs de espessura (na direção da visualização). Onde a imagem é preta, o gás praticamente não se move, enquanto as regiões brancas têm velocidades que superam 1.000 quilômetros por segundo. A imagem contrasta os movimentos de gás nos filamentos cósmicos contra os movimentos rápidos e caóticos desencadeados pelo potencial gravitacional profundo e o buraco negro supermassivo localizado no centro. [Imagem: IllustrisTNG Collaboration]

Ao reunir todo o conhecimento atual, as simulações permitem avaliar novas medições experimentais à medida que elas são realizadas. O inconveniente, claro, é que as simulações sempre se baseiam nas teorias e modelos atuais do Universo, enquanto dados observacionais podem questionar e alterar essas teorias e modelos.
Fonte: Inovação tecnológica

NGC 7635: A nebulosa da bolha em expansão

A bela imagem acima mostra a verdadeira batalha entre a bolha e a nuvem. A NGC 7635, a Nebulosa da Bolha, está sendo empurrada para fora, pelo vento estelar emitido pela estrela BD+602522, visível em azul, na parte direita, dentro da nebulosa. Ali do lado, vive uma gigantesca nuvem molecular, visível na parte extrema direita da imagem em vermelho. Nesse local do espaço, uma força irresistível encontra um objeto imóvel de uma forma interessante. A nuvem é capaz de conter a expansão da bolha de gás, mas é explodida pela radiação quente da estrela central da bolha. A radiação aquece as regiões densas da nuvem molecular fazendo com que ela brilhe. A Nebulosa da Bolha mostrada aqui tem cerca de 10 anos-luz de diâmetro e é parte de um conjunto de estrelas e conchas muito mais complexa. A Nebulosa da Bolha pode ser vista com pequenos telescópios, quando apontados na direção da constelação de Cassiopeia.

O Sol em ultravioleta recebe a visita e o trânsito de VÊNUS em 2012

Um tipo de eclipse solar incomum aconteceu em 2012. Normalmente, no eclipse do Sol é a Lua que passa na frente do Sol, o eclipsando. No ano de 2012, o que passou na frente do Sol, foi o planeta Vênus. Como em um eclipse solar, causado pela Lua, a fase de Vênus tornou-se continuamente mais fina à medida que Vênus se tornava mais bem alinhado com o Sol. Com o alinhamento sendo perfeito, a fase de Vênus cai a zero. E assim o ponto escuro, que na verdade é Vênus, cruzou a face do Sol. A situação poderia ser tecnicamente como um eclipse anular venusiano com um imenso anel de fogo. Registrado, durante a ocultação, o Sol, nessa imagem se apresenta em três cores da luz ultravioleta, adquirida pelo Solar Dynamics Observatory, com a região escura na parte direita da imagem correspondendo a um buraco coronal. Horas mais tarde, Vênus continuou na sua órbita, e a sua fase crescente apareceu novamente. O próximo trânsito de Vênus na frente do Sol acontecerá em 2117.
Related Posts Plugin for WordPress, Blogger...

Artigos Mais Lidos