sexta-feira, 22 de agosto de 2014

Entre a alma e o coração, o belo cometa Jacques

MG_0098jacques_Dierick950

No dia 13 de Julho de 2014, um bom lugar para observar o Cometa Jacques, foi o planeta Vênus. O então recém descoberto visitante (C/2014 E2) ao sistema solar interno passou a uma distância de 14.5 milhões de quilômetros do nosso planeta irmão. Quando estiver de saído do sistema solar interno o cometa passará a 84 milhões de quilômetros do planeta Terra, no dia 28 de Agosto de 2014, mas mesmo assim, já é um alvo interessante para binóculos e telescópios. A dois dias atrás, a coma esverdeada do Jacques e a reta e fina cauda de íons foram capturadas nessa bela imagem telescópica, uma simples imagem de longa exposição de 2 minutos com uma câmera digital modificada. O cometa é visto ladeado pela IC 1805 e pela IC 1848, também conhecidas como as Nebulosas do Coração e da Alma da Cassiopeia.

Se você estiver no planeta Terra nesse final de semana, pode tentar procurar o cometa Jacques no céu noturno, ou observar Vênus, Júpiter e a Lua crescente que formarão um belo triângulo no céu antes do amanhecer. Para quem não sabe o cometa Jacques foi descoberto pelo Cristóvão Jacques, astrônomo brasileiro que junto com seus colegas fez essa e outra descoberta de cometa utilizando o já famoso Observatório SONEAR, localizado no interior de Minas Gerais. Esse observatório é totalmente brasileiro, desde o instrumento, até o software que registra o céu. O Cristóvão é um dos belos exemplos de que se o governo não se interessa nenhum pouco por ciência, nós não podemos desistir. Todo o observatório foi construído com recursos próprios e vem fazendo um belo trabalho. Esse ano, já descobriu dois cometas e uma série de NEOs, ou Near Earth Objects, os asteróides que ameaçam a nossa segurança no nosso tranquilo pálido ponto azul.

Telescópio capta nuvem de cores na explosão de supernova

Imagem feita a partir de uma supernova captada pela Nasa e pela Agência Espacial Europeia mostra nuvem de poeira colorida. Informação em infravermelho do fotômetro de imagem do telescópio Spitzer, da Nasa, em ondas de 24 e 70 microns surgem em vermelho e verde e raios X do XMM-Newton em um alcance de 0.3 a 8 kiloelectron volts em azul.  Os resultados destrutivos da explosão de uma poderosa supernova aparecem revelados nesta mistura delicada de raios infravermelhos e raios X.

A imagem divulgada pela Nasa (Agência especial americana) nesta quinta-feira (21) foi feita pelo telescópio espacial Spitzer em conjunto com o Observatório de Raios X Chandra e pelo Centro de Operações XMM-Newton, da Agência Espacial Europeia.  Em sua descrição, a Nasa referiu-se à nuvem como "uma onda de choque irregular, gerada por uma supernova que teria ocorrido há 3.700 anos na Terra. O material restante, chamado Puppis A, está a aproximadamente 7.000 anos-luz daqui e a onda de choque a dez anos-luz.  As partículas de poeira são responsáveis pela maior parte das ondas de raio infra-vermelho, que aparece em verde e vermelho na imagem.  Os materiais aquecidos pela onda de choque da supernova emitem raios X, que são vistos na cor azul.

As regiões onde as emissões de raios infravermelhos e raios X se misturam surgem em tons pasteis mais claros.  Segundo os pesquisadores da Nasa, pelo brilho infravermelho, os astrônomos encontraram uma quantidade de poeira na região equivalente a um quarto da massa do nosso sol. Pelos dados coletados pelo espectrômetro do Spitzer, é possível ver como a onda de choque quebra os grãos de poeira que preenchem o espaço ao redor.  As explosões de supernovas oferecem muitos elementos para que as gerações futuras de estrelas e planetas que vão se formar. Ao estudar como o material resultante da supernova se expande em uma galáxia e interage com outros materiais também oferece pistas sobre a origem do nosso universo.
Fonte: UOL

Novo mapa de Tritão, e estranha lua de Netuno

A sonda Voyager 2 passou por Tritão, uma lua de Neptuno, no Verão de 1989.
Crédito: NASA/JPL-Caltech/Instituto Lunar e Planetário

A sonda Voyager 2 da NASA deu-nos o primeiro olhar de perto de Neptuno e da sua lua, Tritão, no Verão de 1989. Como um filme antigo, as imagens históricas de Tritão pela Voyager foram "restauradas" e usadas para construir o melhor mapa de sempre desta lua estranha. O mapa, produzido por Paul Schenk, cientista do Instituto Lunar e Planetário em Houston, EUA, também foi usado para fazer um vídeo que recria o encontro histórico da Voyager, que ocorreu há 25 anos, no dia 25 de Agosto de 1989. O novo mapa de Tritão tem uma resolução de 600 metros por pixel. Aumentaram o contraste mas as cores são uma boa aproximação das cores naturais de Tritão. Os "olhos" da Voyager vêm cores ligeiramente diferentes das do olho humano, e este mapa foi produzido usando imagens obtidas em filtros laranja, verde e azul.

Em 1989, a maior parte do hemisfério norte estava na escuridão e por isso não foi visto pela Voyager. Devido à velocidade da visita da sonda e da lenta rotação de Tritão, apenas um hemisfério foi visto claramente a curtas distâncias. O resto da superfície ou estava na escuridão ou foi visto de modo desfocado. A produção do novo mapa de Tritão foi inspirado em antecipação do encontro da sonda New Horizons da NASA com Plutão, daqui a pouco menos de um ano. Entre as melhorias do mapa estão actualizações da precisão de características locais, o melhoramento da definição de detalhes à superfície ao remover alguns dos efeitos de esbatimento da câmara, e melhor processamento de cores.

Embora Tritão seja uma lua de um planeta e Plutão seja um planeta anão, Tritão serve como uma espécie de previsão para o encontro com Plutão. Embora ambos os corpos tenham origem no Sistema Solar exterior, Tritão foi capturado por Neptuno e passou por uma fase térmica radicalmente diferente da de Plutão. O aquecimento de marés provavelmente derreteu o interior de Tritão, produzindo os vulcões, fracturas e outras características geológicas que a Voyager viu na sua superfície gelada.

É improvável que Plutão seja uma cópia de Tritão, mas algumas das mesmas características podem estar presentes. Tritão é ligeiramente maior que Plutão, tem uma densidade interna e composição muito semelhantes, e tem os mesmos elementos voláteis a baixa temperatura na sua superfície gelada. A composição da superfície de ambos os corpos inclui monóxido de carbono, dióxido de carbono, metano e gelos de azoto.

A Voyager também descobriu plumas atmosféricas em Tritão, o que a torna num dos corpos activos conhecidos do Sistema Solar exterior, juntamente com as luas Io, de Júpiter, e Encelado em Saturno. Os cientistas vão observar Plutão no ano que vem para ver se se junta a esta lista. Vão também comparar o contraste de Plutão com Tritão, e como as suas histórias diferentes moldaram as superfícies que vemos. Embora seja uma rápida passagem rasante, o encontro da New Horizons com Plutão, previsto para o dia 14 de Julho de 2015, não será uma repetição do "flyby" da Voyager mas mais uma espécie de sequela e "reboot", com uma nave espacial nova e tecnologicamente mais avançada e, ainda mais importante, um novo elenco de personagens.

Essas personagens são Plutão e a sua família de cinco luas conhecidas, todas as quais serão observadas de perto pela primeira vez no próximo Verão. Tritão pode não ser uma pré-visualização perfeita do que está por vir, mas serve como uma prequela para o "blockbuster" cósmico esperado por parte da New Horizons, quando chegar a Plutão no próximo ano.Em mais um marco histórico para a missão Voyager, o dia 25 de Agosto também assinala o segundo aniversário da entrada da Voyager 1 no espaço interestelar.
Fonte: Astronomia Online - Portugal

quarta-feira, 20 de agosto de 2014

Marte se aproxima da Terra e ficará maior que a Lua cheia. Será?


Gráfico compara os tamanhos aparentes de Marte e da Lua cheia. Créditos: Apolo11.com.

Todos os anos circula pela internet um boato afirmando que no dia 27 de agosto o Planeta Vermelho vai se aproximar tanto da Terra que seu tamanho será comparável ao da Lua Cheia. Será que isso é verdade ou não passa de mais uma pegadinha de internet?

Naturalmente, isso não é verdade.

Há bilhões de anos, Marte e Terra giram ao redor do Sol. Marte em uma orbita ligeiramente mais achatada e a Terra em uma trajetória praticamente circular. A cada 26 meses os dois planetas se aproximam um pouco mais um do outro, sendo que as distâncias envolvidas não são constantes. Durante os momentos da máxima aproximação, as distâncias entre Marte e Terra podem ficar realmente pequenas, da ordem de até 70 milhões de quilômetros. Ninguém sabe exatamente como essa história começou, mas o fato é que sempre que o dia 27 de agosto se aproxima, o mesmo boato da aproximação máxima se repete, dando conta que a distância entre os dois planetas será de apenas 54 milhões de quilômetros.
Carta Celeste Marte 27 de agosto de 2014
Carta celeste retrata o céu do quadrante oeste em 27 de agosto de 2014 as 21 horas. Créditos: Apolo11.com.

A maior aproximação entre Marte e Terra ocorreu em 27 de agosto de 2003, quando a distância mínima entre os dois planetas foi de apenas 56 milhões de km, a maior aproximação desde o Homem de Neandertal, há 60 mil anos. Uma aproximação como essa só ocorrerá novamente em 2287! Mesmo durante a aproximação de 2003, Marte não passou de uma mini bolinha quando comparada ao tamanho da Lua.

Como será o céu?

Agora que você já sabe que Marte não ficará nunca do tamanho da Lua cheia, relaxe. O céu reserva diversas atrações verdadeiras. No dia 27 de agosto de 2014, quarta-feira, Marte estará visível, alto no céu, a partir do momento em que o Sol se pôr. Como mostra a carta celeste das 21 horas desse dia, o Planeta Vermelho estará super bem acompanhado de Saturno no quadrante oeste e vê-los tão próximos renderá boas fotos. Acima da dupla, a gigantesca estrela Antares presente no centro da constelação do Escorpião, domina o cenário. Olhando em direção ao sul o Cruzeiro é a grande vedete e será facilmente localizado logo abaixo das duas estrelas mais brilhantes da constelação do Centauro. Um espetáculo verdadeiro, de encher os olhos. E sem Lua Cheia!
Fonte: Apolo11.com - http://www.apolo11.com/

Bóson de Higgs também poderia explicar a primeira expansão do Universo

boson de higgs

Desde que o bóson de Higgs foi flagrado em ação pela primeira vez, muitas especulações foram feitas a seu respeito. A mais recente delas está sendo proposta pelos pesquisadores Fedor Bezrukov, do Centro de Pesquisa Riken-BNL, e Mikhail Shaposhnikov, do Instituto Federal Suíço de Tecnologia em Lausanne. Segundo eles, o bóson de Higgs, que foi recentemente confirmado como a origem da massa, também pode ser responsável pela expansão e pela forma que o universo tomou logo após o Big Bang. De acordo com Bezruko, “há uma conexão intrigante entre o mundo explorado em aceleradores de partículas de hoje e os primeiros momentos de existência do universo”.


Bóson de Higgs e a expansão do Universo

O universo começou com a famosa e gigante explosão conhecida como Big Bang, e vem se expandindo progressivamente desde então. Essa expansão é equilibrada de tal maneira que a sua forma é plana e não inclinada, o que, segundo os pesquisadores do assunto, só pode ser o caso de uma distribuição muito específica da densidade da matéria. O acoplamento entre o bóson de Higgs e outras partículas fundamentais fornece massa. Nos primeiros momentos do universo, no entanto, esse acoplamento entre o campo de Higgs e a gravidade acelerou o processo de expansão do mesmo.

Um parâmetro importante para entendermos esse acoplamento é a massa do Bóson de Higgs.

Experiências realizadas no acelerador de partículas do CERN (Organização Europeia para Pesquisa Nuclear) mostraram que a massa do bóson de Higgs é muito próxima de um valor crítico que separa dois tipos possíveis de universo: o estável, que nós conhecemos, ou um potencialmente instável. Bezrukov e Shaposhnikov já estudaram as implicações decorrentes da massa de Higgs estar perto desse limite crítico e o impacto que isso tem sobre a expansão do universo. Através de argumentos teóricos, eles concluíram que, como a massa do bóson de Higgs se aproxima do valor crítico, as ondas gravitacionais do Big Bang tornam-se fortemente reforçadas.

Sob este ponto de vista, o Big Bang é visto como o criador de muitas ondas gravitacionais que atuam como ondas no espaço e no tempo, e são justamente essas ondas que são amplificadas por um Higgs de massa quase crítica. Experimentalmente falando, a influência do bóson de Higgs poderia ter implicações significativas para a observação de ondas gravitacionais – aspecto este que havia escapado dos físicos até recentemente, quando uma análise de dados obtidos pelo telescópio BICEP2 perto do Pólo Sul sugeriu os primeiros sinais de ondas gravitacionais na radiação cósmica de fundo que preenche o universo.

O resultado da análise dos dados fornecidos pelo BICEP2, no entanto, está longe de ser absoluto, já que levanta o debate eterno sobre se o sinal extremamente fraco de ondas gravitacionais poderia realmente ser detectado desta forma. Os efeitos de uma massa quase crítica de Higgs, contudo, poderiam colocar um fim nesta discussão. “A massa de Higgs no limite crítico poderia explicar o resultado do BICEP2“, explica Bezrukov. Poderia. Mas, por enquanto, permanecemos com a cabeça cheia de perguntas, poucas respostas e muitas possibilidades.
Fonte: HypeScience.com
[Phys]

Uma paisagem espetacular de formação estelar

NGC 3603 e NGC 3576 Créditos:ESO/G. Beccari
Esta imagem obtida pelo instrumento Wide Field Imager, no Observatório de La Silla do ESO, no Chile, mostra duas regiões de formação estelar na Via Láctea austral. A primeira destas regiões, à esquerda, é dominada pelo enxame estelar NGC 3603 e situa-se a 20 000 anos-luz de distância, no braço em espiral Carina-Sagitário da nossa Via Láctea. A segunda, à direita, trata-se de uma coleção de nuvens de gás brilhante conhecida pelo nome de NGC 3576 e situa-se a apenas metade da distância a que primeira região se encontra da Terra. O NGC 3603 é um enxame estelar muito brilhante, famoso por ter a mais alta concentração de estrelas massivas descobertas na nossa Galáxia até agora.

No seu centro situa-se um sistema estelar múltiplo Wolf-Rayet, conhecido por HD 97950. As estrelas Wolf-Rayet encontram-se num estado avançado de evolução e apresentam massas a partir de 20 vezes a massa solar. No entanto, apesar da sua elevada massa, estas estrelas libertam uma quantidade considerável de matéria, devido a intensos ventos estelares, que enviam o material da superfície estelar para o espaço a velocidades de vários milhões de quilómetros por hora, no que pode ser considerado uma dieta drástica de proporções cósmicas.

O NGC 3603 situa-se numa região de formação estelar muito ativa. As estrelas nascem em regiões do espaço escuras e poeirentas, escondidas da vista. À medida que as estrelas muito jovens começam a brilhar e limpam os casulos de material que as rodeiam, tornam-se visíveis e dão origem a brilhantes nuvens de material circundante, conhecidas por
regiões HII. As regiões HII brilham devido à interação entre a radiação ultravioleta emitida pelas estrelas jovens quentes brilhantes e as nuvens de gás de hidrogénio. As regiões HII podem ter um diâmetro de várias centenas de anos-luz e a região HII que rodeia a NGC 3603 tem a particularidade de ser a mais massiva da nossa Galáxia.

Este enxame foi observado pela primeira vez por John Herschel a 14 de março de 1834 perto da Cidade do Cabo, durante a sua expedição de três anos para mapear o céu austral de forma sistemática. Este astrónomo descreveu o objeto como extraordinário e pensou que poderia tratar-se de um
enxame estelar globular. Estudos posteriores mostraram que não se trata de um enxame globular velho, mas sim de um jovem enxame aberto, um dos mais ricos conhecidos. A nebulosa NGC 3576, situada no lado direito da imagem, encontra-se igualmente no braço em espiral de Carina-Sagitário da Via Láctea, no entanto está apenas a 9000 anos-luz de distância da Terra - muito mais perto que o NGC 3603, mas aparece próximo deste no céu.

A NGC 3576 apresenta dois enormes objetos curvos que parecem os chifres de um bode. Estes estranhos filamentos são o resultado de ventos estelares emitidos por estrelas quentes e jovens que se situam nas regiões centrais da nebulosa e que lançam gás e poeira para o exterior a centenas de anos-luz de distância. Duas regiões escuras, conhecidas por
glóbulos de Bok, são também visíveis neste vasto complexo de nebulosas. As nuvens pretas próximo do topo da nebulosa são igualmente potenciais locais de futura formação estelar.  A NGC 3576 foi também descoberta por John Herschel em 1834, fazendo com que este fosse um ano particularmente produtivo e visualmente recompensador para o astrónomo inglês.

Terrenos contrastantes no cometa CHURYUMOV-GERASIMENKO



rosetta02_esa_960
Créditos da imagem: ESA, Rosetta, MPS for OSIRIS Team; MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Onde Philae deve pousar? Enquanto a sonda robótica da ESA Rosetta circula em torno do cometa 67P/Churyumov-Gerasimenko, uma decisão deve, eventualmente, ser feita a respeito de onde seu aterrissador mecânico deve tentar atracar. Alcançando o cometa no início deste mês, a Rosetta está enviando de volta imagens detalhadas de núcleo incomum deste copro a partir do qual um local de pouso suave será selecionado.

Na foto acima, perto da parte superior da imagem, a “cabeça” do núcleo do cometa mostra sulcos escarpados, enquanto na parte inferior da imagem, o “corpo” mostra uma manta de áreas em forma de retalhos, por vezes separados por montes irregulares. Algumas das áreas de retalhos evidentes sobre a cabeça e o corpo parecem ter campos de relevo relativamente suaves.

No entanto, na área de ligação da chamada de “o pescoço”, visível através do centro da imagem, uma parte relativamente grande com terreno liso e de cor clara aparece, pontuado ocasionalmente por grandes pedregulhos. A Rosetta está programada para liberar Philae ao núcleo do cometa escuro, do tamanho de uma montanha, com uma data de desembarque prevista para novembro.

terça-feira, 19 de agosto de 2014

O planeta Mercúrio pintado de azul e amarelo em imagens da Sonda MESSENGER

EW1046686748G.3band.mapped

Essa imagem, mostra a porção norte da Rachmaninoff, apresentando uma possível abertura vulcânica para o leste e uma expansão do terreno que aparece azul nessa imagem colorida para oeste. A coloração laranja amarelada da depressão e a forma irregular são similares a outras possíveis aberturas vulcânicas em Mercúrio. Para o oeste da grande abertura está uma cratera com uma depressão irregular laranja em seu assoalho que pode também ser uma abertura. Aberturas vulcânicas em Mercúrio são evidências que indicam vulcanismo explosivo que prevaleceu no passado do planeta.

A imagem acima foi adquirida como uma observação colorida planejada de alta resolução. Observações planejadas coloridas são imagens feitas de pequenas áreas da superfície de Mercúrio com resoluções maiores que 1 quilômetro por pixel, que são usadas no mapa base de 8 cores. Durante a missão primária de um ano da sonda MESSENGER, centenas de observações coloridas planejadas foram obtidas. Durante a missão estendida da sonda MESSENGER, observações coloridas planejadas de altas resoluções são mais raras, já que o mapa base de 3 cores cobriu o hemisfério norte de Mercúrio com a mais alta resolução possível para as imagens coloridas.

Pulsos de radiação iluminam buraco negro


Astrónomos mediram com precisão - e, portanto, confirmaram a existência de - um raro buraco negro de massa intermédia com cerca de 400 vezes a massa do nosso Sol numa galáxia a 12 milhões de anos-luz da Via Láctea. A descoberta, publicada no passado dia 17 de Agosto na revista Nature, usa uma técnica nunca antes aplicada desta maneira, e abre a porta para novos estudos sobre estes objectos misteriosos.

Esta imagem da galáxia M82 é uma composição de dados do Observatório de Raios-X Chandra, do Telescópio Espacial Hubble e do Telescópio Espacial Spitzer. O buraco negro de massa intermédia M82 X-1 é o objecto mais brilhante na ampliação do canto superior direito, aproximadamente às 2 horas do centro da galáxia. Crédito: NASA/H. Feng et al.

O Universo tem tantos buracos negros que é impossível contá-los todos. Só na nossa Galáxia podem existir 100 milhões destes objectos astronómicos. Quase todos os buracos negros pertencem a uma de duas classes: grande e colossal. Os astrónomos sabem que os buracos negros que variam entre cerca de 10 vezes e 100 vezes a massa do nosso Sol são os remanescentes de estrelas moribundas, e que os buracos negros supermassivos, com mais de um milhão de vezes a massa do Sol, habitam os centros da maioria das galáxias.

Mas espalhados pelo Universo como oásis no deserto, estão alguns buracos negros aparentemente de um tipo mais misterioso. Variando desde uma centena de vezes até algumas centenas de milhares de vezes a massa do Sol, estes buracos negros de massa intermédia são tão difíceis de medir que até a sua existência é por vezes contestada. Pouco se sabe sobre como se formam. E alguns astrónomos questionam se se comportam como outros buracos negros. Agora, uma equipa de astrónomos conseguiu medir com precisão - e assim confirmar a existência de - um buraco negro com aproximadamente 400 vezes a massa do nosso Sol numa galáxia a 12 milhões de anos-luz da Terra.

A descoberta, pelo estudante de astronomia Dheeraj Pasham e dois colegas, da Universidade de Maryland, EUA, foi publicada online no dia 17 de Agosto na revista Nature.O co-autor Richard Mushotzky, professor de astronomia da mesma universidade, diz que o buraco negro em questão é uma versão ideal desta classe de objectos. Os objectos nesta escala são os menos esperados de todos os buracos negros," afirma Mushotzky. "Os astrónomos têm vindo a perguntar, será que estes objectos existem ou não? Quais são as suas propriedades? Até agora não tínhamos dados para responder a estas questões." Apesar do buraco negro de massa intermédia que a equipa estudou não ser o primeiro medido, é o primeiro a ser medido com precisão, realça Mushotzky, "estabelecendo-o como um exemplo interessante desta classe de buracos negros."

Um buraco negro é uma região no espaço que contém uma massa tão densa que nem mesmo a luz pode escapar à sua gravidade. Os buracos negros são invisíveis, mas os astrónomos podem encontrá-los ao acompanhar a atracção gravitacional que exercem sobre outros objectos. A matéria que é puxada na direcção do buraco negro reúne-se em seu redor como detritos de uma tempestade que giram em redor do centro de um tornado. Estes materiais cósmicos entram em contacto uns com os outros e produzem fricção e radiação, o que faz com que as regiões imediatamente próximas do buraco negro estejam entre as mais brilhantes do Universo.

Desde a década de 1970 que os astrónomos observam algumas centenas de objectos que pensam ser buracos negros de massa intermédia. Mas não conseguiam medir a sua massa, por isso não podiam ter a certeza. "Por razões que são muito difíceis de explicar, estes objectos têm resistido às técnicas de medição padrão," comenta Mushotzky. Pasham, que completará o seu doutoramento no dia 22 de Agosto, focou-se num objecto em Messier 82, uma galáxia na constelação de Ursa Maior. M82 é a galáxia "starbust" (galáxia que atravessa um período de formação estelar excepcionalmente activo) mais próxima da Via Láctea, onde estrelas jovens estão em formação.

Desde 1999 que um observatório espacial da NASA, o Observatório de Raios-X Chandra, detecta raios-X em M82 a partir de um objecto brilhante prosaicamente apelidado M82 X-1. Os astrónomos, incluindo Mushotzky e o co-autor Tod Strohmayer do Centro de Voo Espacial Goddard da NASA, suspeitam há já quase uma década que o objecto era um buraco negro de massa intermédia, mas as estimativas da sua massa não eram suficientemente definitivas para o confirmar. Entre 2004 e 2010, o telescópio espacial RXTE (Rossi X-Ray Timing Explorer) da NASA observou M82 X-1 cerca de 800 vezes, registando partículas individuais de raios-X emitidas pelo objecto. Pasham mapeou a densidade e comprimento de onda dos raios-X em cada sequência, agrupou-as e analisou os resultados.

Entre o material que orbita o alegado buraco negro, avistou dois surtos repetidos de radiação. Os surtos mostravam um padrão rítmico de pulsos, um ocorrendo 5,1 vezes por segundo e outro 3,3 vezes por segundo - ou uma proporção de 3:2. As duas oscilações foram como duas partículas de poeira presas nos sulcos de um disco de vinil a ser tocado num gira-discos, realça Mushotzky. Se as oscilações fossem batidas musicais, produziriam um ritmo sincopado específico. Os astrónomos podem usar a oscilação de radiação 3:2 para medir a massa de um buraco negro. A técnica tem sido usada em buracos negros mais pequenos, mas nunca tinha sido aplicada para buracos negros de massa intermédia.

Pasham usou as oscilações para estimar que M82 X-1 tem 428 vezes a massa do Sol, com mais ou menos 105 massas solares. Ele não propõe uma explicação para como esta classe de buracos negros se forma. "Precisávamos primeiro de confirmar a sua existência por meio de observações," afirma. "Agora, os teóricos podem começar a trabalhar. Embora o telescópio Rossi já não esteja operacional, a NASA planeia lançar um novo telescópio de raios-X, o NICER (Neutron Star Interior Composition Explorer), daqui a cerca de dois anos, a ser acoplado à Estação Espacial Internacional. Pasham, que começará uma posição de pesquisa de pós-doutorado no Centro Goddard da NASA no final de Agosto, identificou seis potenciais buracos negros de massa intermédia que o NICER poderá explorar.
Fonte: Astronomia Online - Portugal

segunda-feira, 18 de agosto de 2014

Asteroide que desafia as leis da Física pode destruir a Terra em 2880

Fonte: Shutterstock

Um asteroide visto pela primeira vez na década de 1950, o 1950 DA, pode acabar com a Terra daqui a 866 anos, no dia 16 de março de 2880. A chance de colisão é pequena – apenas 0,3%  –, mas o que chama mesmo atenção são as características do corpo celeste, que parece desafiar as leis da Física. De acordo com uma equipe de pesquisadores da Universidade de Tennesse, nos EUA, o asteroide monstro mede cerca de 1.000 metros de diâmetro e possui uma velocidade de rotação absurda: ele dá uma volta completa ao redor de si mesmo a cada duas horas e seis minutos, suficiente para que ele se desintegrasse. Inclusive, o 1950 DA gira tão rápido que chega a apresentar gravidade negativa na altura de seu equador.

 Se por acaso um astronauta desavisado tentasse chegar até sua superfície, ele seria arremessado para o espaço. Mas como o asteroide permanece intacto e não se desintegra, como seria o esperado? Segundo os cientistas, estudos para determinar a temperatura e a densidade do 1950 DA levaram à conclusão de que ele apresenta forças coesivas – conhecidas como “forças de van der Waals” –, as quais possibilitam que suas moléculas fiquem unidas.

“Se apenas a gravidade estivesse segurando esse monte de pedras juntas, como geralmente acontece, elas iriam sair voando cada uma para um lado. Portanto, forças coesivas interpartículas devem estar mantendo a união”, explicou o pesquisador Ben Rozitis. Esse tipo de forças coesivas já foi estimado matematicamente em asteroides pequenos, mas ainda não há uma prova definitiva de que elas realmente existam. “Entender o que segura esse asteroide intacto pode ajudar a desenvolver estratégias para evitar futuros impactos”, completou o cientista.
Fonte: Reprodução/SciNotions
A pesquisa também mostra que algumas técnicas para tentar destruir o asteroide podem causar efeitos ainda piores. Por exemplo, colocar um objeto de grandes proporções no caminho do 1950 DA interferiria nas forças coesivas, fazendo com que o corpo celeste se dividisse em vários asteroides menores que também poderiam se chocar contra a Terra. Estima-se que o asteroide cairia por aqui com uma velocidade de 60 mil quilômetros por hora, causando uma explosão com força de 44,8 mil megatoneladas de TNT – quase 2 milhões de vezes mais do que a bomba atômica de Nagasaki.

Embora a probabilidade de choque contra a Terra seja de apenas 0,3%, isso significa que o corpo possui um risco de impacto 50% maior do que os outros asteroides. Apesar dos números espantosos, os cientistas afirmam que não há por que se preocupar. Caso se mostre necessário desviar a trajetória do 1950 DA, temos tempo suficiente para utilizar um método simples como cobrir a superfície com pó de carvão ou giz – isso mudaria sua refletividade e permitiria que a luz do sol tirasse o corpo celeste do caminho da Terra.