Imagem de Eta Carinae com maior resolução obtida até à data
O Interferómetro do VLT captura ventos fortes no famoso sistema estelar massivo
Imagem detalhada de Eta Carinae Créditos:
ESO/G. Weigel
Uma equipe internacional de astrónomos utilizou o Interferómetro do Very Large Telescope para obter imagens do sistema estelar de Eta Carinae, as mais detalhadas obtidas até à data. A equipa descobriu estruturas novas e inesperadas no sistema binário, incluindo uma região entre as duas estrelas onde ventos estelares de velocidades extremamente elevadas colidem. Esta nova descoberta sobre o enigmático sistema estelar poderá levar a uma melhor compreensão da evolução de estrelas de elevada massa. Uma equipe de astrónomos, liderada por Gerd Weigelt do Instituto Max Planck de Rádio Asttronomia (MPIfR) em Bona, na Alemanha, utilizou o Interferómetro do Very Large Telescope (VLTI), instalado no Observatório do Paranal do ESO, para obter uma imagem única do sistema estelar Eta Carinae situado na Nebulosa Carina.
Este colossal sistema binário, constituído por duas estrelas massivas que orbitam em torno uma da outra, é muito ativo, dando origem a ventos estelares com velocidades que vão até 10 milhões de km por hora [1]. A região entre as duas estrelas, onde os ventos de ambas colidem, é muito turbulenta, mas até agora não se tinha ainda conseguido estudar. O poder do binário Eta Carinae cria fenómenos dramáticos. Astrónomos dos anos 1830 observaram uma “Grande Erupção” no sistema. Sabemos agora que esta erupção ocorreu quando a maior das estrelas do binário libertou enormes quantidades de gás e poeira num curto período de tempo, o que levou à formação dos lóbulos distintos, conhecidos por Nebulosa Homunculus, que vemos atualmente no sistema.
Este colossal sistema binário, constituído por duas estrelas massivas que orbitam em torno uma da outra, é muito ativo, dando origem a ventos estelares com velocidades que vão até 10 milhões de km por hora [1]. A região entre as duas estrelas, onde os ventos de ambas colidem, é muito turbulenta, mas até agora não se tinha ainda conseguido estudar. O poder do binário Eta Carinae cria fenómenos dramáticos. Astrónomos dos anos 1830 observaram uma “Grande Erupção” no sistema. Sabemos agora que esta erupção ocorreu quando a maior das estrelas do binário libertou enormes quantidades de gás e poeira num curto período de tempo, o que levou à formação dos lóbulos distintos, conhecidos por Nebulosa Homunculus, que vemos atualmente no sistema.
O efeito combinado dos dois ventos estelares a chocarem um contra o outro a velocidades extremas faz com que as temperaturas na região aumentem para milhões de graus e ocorram intensos “dilúvios” de raios X. A área central onde os ventos colidem é relativamente pequena — mil vezes menor que a Nebulosa Homunculus — razão pela qual os telescópios colocados tanto no espaço como no solo não tinham ainda conseguido obter uma imagem detalhada da região. A equipa utilizou o poder resolvente do instrumento AMBER do VLTI para observar este reino violento pela primeira vez. Uma combinação inteligente — um interferómetro — de três dos quatro Telescópios Auxiliares do VLT fez aumentar em 10 vezes o poder resolvente, relativamente a um único Telescópio Principal do VLT.
Conseguiu-se assim obter a imagem mais nítida de sempre do sistema, o que levou à obtenção de resultados inesperados sobre a sua estrutura interna. A nova imagem VLTI mostra claramente a estrutura que existe entre as duas estrelas Eta Carinae. Foi observada uma inesperada forma em ventoinha na região onde o vento da estrela mais pequena e mais quente colide com o vento mais denso da estrela maior. Os nossos sonhos tornaram-se realidade, porque agora conseguimos obter imagens extremamente nítidas no infravermelho. O VLTI dá-nos a oportunidade única de aumentar o nosso conhecimento sobre Eta Carinae e sobre muitos outros objetos chave”, diz Gerd Weigelt.
Para além das imagens, observações espectroscópicas da zona de colisão permitiram medir as velocidades dos intensos ventos estelares. Com estes valores, foi possível criar modelos de computador mais precisos da estrutura interna deste sistema estelar, o que nos ajudará a compreender como é que estas estrelas de massas extremamente elevadas perdem massa à medida que evoluem. Um dos membros da equipa, Dieter Schertl (MPIfR), olha para o futuro:” Os novos instrumentos GRAVITY e MATISSE do VLTI permitir-nos-ão obter imagens interferométricas com ainda mais precisão e num intervalo de comprimentos de onda ainda maior. É necessário um vasto intervalo de comprimentos de onda para se poder derivar as propriedades físicas de muitos objetos astronómicos.”
Para além das imagens, observações espectroscópicas da zona de colisão permitiram medir as velocidades dos intensos ventos estelares. Com estes valores, foi possível criar modelos de computador mais precisos da estrutura interna deste sistema estelar, o que nos ajudará a compreender como é que estas estrelas de massas extremamente elevadas perdem massa à medida que evoluem. Um dos membros da equipa, Dieter Schertl (MPIfR), olha para o futuro:” Os novos instrumentos GRAVITY e MATISSE do VLTI permitir-nos-ão obter imagens interferométricas com ainda mais precisão e num intervalo de comprimentos de onda ainda maior. É necessário um vasto intervalo de comprimentos de onda para se poder derivar as propriedades físicas de muitos objetos astronómicos.”
Fonte: ESO
Comentários
Postar um comentário
Se você achou interessante essa postagem deixe seu comentario!