Olhar mais nítido para o buraco negro M87

 O Machine Learning reconstrói uma nova imagem a partir de dados EHT

Nova imagem do buraco negro supermassivo M87 gerada pelo algoritmo PRIMO usando dados EHT de 2017 

A primeira imagem de um buraco negro acaba de ganhar uma versão aprimorada. Uma equipe de pesquisadores liderados pela brasileira Lia Medeiros utilizou uma nova técnica de aprendizado de máquina para dar mais nitidez ao dados originais, auxiliando cientistas de todo o mundo no estudo do buraco negro supermassivo M87*, que fica no centro da galáxia Messier 87.

Quando a 1ª foto real de um buraco negro foi revelada ao público em 2019, alguns se decepcionaram pelo aspecto “borrado” dos anéis do disco de acreção ao redor do objeto. Esperava-se algo mais parecido com o buraco negro Gargantua, de Interestelar, e menos como uma mancha alaranjada.

Contudo, a imagem era espetacular e muito importante — e ficou ainda mais especial com a nova versão criada por um algoritmo de aprendizado de máquina chamado PRIMO (Principal-component Interferometric Modeling). Trata-se de uma IA desenvolvida pelos próprios membros do Event Horizon Telescope (EHT), a colaboração internacional que obteve a foto do M87* e anos depois tirou uma foto do Sagitário A* — o buraco negro supermassivo que fica no centro da Via Láctea.

A equipe desenvolvedora do PRIMO criou a nova versão da imagem com alta fidelidade e resolução, sem deixar de lado a precisão dos dados obtidos pelos vários observatórios ao redor do mundo usados para fotografar o M87* — uma rede de sete radiotelescópios em diferentes locais ao redor do mundo para formar um telescópio virtual do tamanho da Terra.

Comparação entre a imagem original do EHT à esquerda e a reconstrução do PRIMO à direita (Imagem: Reprodução/L. Medeiros/D. Psaltis/T. Lauer/F. Ozel)

Mesmo com potência e resolução do EHT, capaz de observar a “sombra” do horizonte de eventos do buraco negro, seria necessário um telescópio literalmente do tamanho da Terra para trazer mais dados do objeto. O PRIMO resolveu essa limitação e forneceu detalhes muito mais refinados, com toda a extensão da região central escura e o anel externo bem mais estreito.

O PRIMO se baseia em algo chamado aprendizado de dicionário, que utiliza certas regras e milhares de exemplos. Nesse caso, os computadores analisaram mais de 30.000 imagens simuladas de alta fidelidade com detalhes do gás ionizado do disco de acreção em um buraco negro para procurar os padrões que sempre aparecem nas imagens.

Com isso, a IA conseguiu formar uma representação precisa das observações do EHT, com detalhes que estavam ausentes da foto original. Embora não seja uma foto real, a técnica garantiu que o resultado apresentasse uma estimativa de alta fidelidade da estrutura, já que as imagens que usadas para ensinar o PRIMO foram de simulações matematicamente precisas.

Será que o próximo passo será usar o PRIMO para melhorar também a foto do buraco negro supermassivo da Via Láctea, obtida pelo EHT em 2022? Aguardemos!

Fonte: IAS

Comentários

Postagens mais visitadas deste blog

Um rejuvenescimento galáctico

Espiral de lado

Planeta Mercúrio

Lua eclipsa Saturno

Messier 2

Esta estrela gigante vermelha tem manchas maiores que todo o sol

Alpha Camelopardalis: Estrela Veloz Cria Uma Onda de Choque

Ou a energia escura não é constante ou uma segunda força desconhecida está em ação...

Nosso Sistema Solar pode capturar um planeta? Cientistas dizem que sim

Astrônomos detectam novo pulsar de 1,9 segundos usando FAST