Vida e Morte de uma Estrela

Arte: A explosão de uma supernova é descomunal. Em poucos dias a estrela libera mais energia que nosso Sol em toda a sua vida. A explosão é tão brilhante que mesmo ocorrendo a centenas de anos-luz de distância pode ser vista da Terra até durante o dia.
 
A morte de uma estrela é predeterminada logo no seu nascimento através do seu tamanho e das características da usina de força que a mantém brilhando durante toda sua vida. As estrelas, entre as quais o nosso Sol, são alimentadas pela fusão dos átomos de hidrogênio que se transformam em hélio sob o intenso calor e pressão encontrados do núcleo estelar. O núcleo do hélio produzido é ligeiramente mais leve que as massas de quatro núcleos de hidrogênio necessários à sua produção. A partir de teoria da relatividade de Einstein (E = MC2), sabemos que a falta dessa massa é transformada em energia.

Estrelas similares ao nosso Sol terminam sua vida quando consomem totalmente suas reservas de hidrogênio, ardendo em uma silenciosa e gigantesca expansão de diâmetro. No entanto, estrelas com oito ou mais vezes a massa solar finalizam sua vida de modo muito mais cataclísmico. A fusão nuclear continua mesmo após a exaustão do hidrogênio, produzindo elementos pesados em diferentes camadas.

O processo continua até que o núcleo estelar se transforme em ferro, quando então outro fenômeno ocorre: devido à descomunal temperatura e pressão, os átomos do ferro também se rompem em seus componentes prótons e nêutrons. Quando isso acontece as camadas superiores ao núcleo desmoronam, lançando ao espaço o resto do material estelar e produzindo um poderoso clarão chamado flash da supernova. A explosão é descomunal. Em poucos dias a supernova libera mais energia do que nosso Sol em toda a sua vida. A explosão é tão brilhante que mesmo ocorrendo a centenas de anos-luz de distância pode ser vista da Terra até durante o dia.

Gravidade Intensa

Ao mesmo tempo em que as camadas externas da supernova são lançadas ao espaço, produzindo flashes de intensidade universal, seu núcleo se desmorona cada vez mais. A gravidade criada durante o colapso se torna tão intensa que os prótons e elétrons se comprimem formando nêutrons e o outrora gigantesco núcleo estelar é reduzido de 10 mil quilômetros para menos de 10 quilômetros de diâmetro. O núcleo se torna tão comprimido que uma caixa cheia de material estelar pesa mais que todo o Sistema Solar. Mas as coisas não param por aí. Se a supernova que acabou de explodir possuir 20 vezes mais massa que nosso Sol, sua gravidade se torna tão forte que nem mesmo a luz, que viaja a 300 mil quilômetros por segundo, consegue escapar de seu interior. Essa ex-estrela, chamada agora buraco negro, se torna então invisível.

100 vezes a Massa do Sol

Até agora, nenhuma supernova que os cientistas estudaram havia excedido 20 vezes a massa solar. Com auxílio das imagens dos telescópios Hubble e Keck, Leonard e Gal-Yam focaram seus estudos em uma região específica do espaço e localizaram uma estrela próxima ao ponto de explosão, calculando sua massa entre 50 e 100 vezes nosso Sol.  A observação revelou que apenas uma pequena parte da massa da estrela foi lançada para fora durante a explosão. A maior parte do material, diz Gal-Yam, foi atraída para a região central do colapso pela violenta atração gravitacional. A sequência de imagens após a explosão mostrou que a estrela havia desaparecido. Em outras palavras, a estrela tornou-se um buraco negro, tão denso que nem mesmo a luz consegue escapar.

Comentários

Postagens mais visitadas deste blog

Galéria de Imagens - Os 8 planetas de nosso Sistema Solar

Galáxias na Fornalha

Messier 109

Tipos de Estrelas

Galáxias no Rio

Gás galáctico escapa

M100

Poeira de meteoro

Conheça as 10 estrelas mais próximas da Terra

O QUE SÃO: Quasares, Blazares, Pulsares e Magnetares