Pular para o conteúdo principal

Físicos medem o vácuo pela primeira vez


A física é o campo da ciência que estuda as propriedades da matéria e da energia – ou seja, tudo que existe, e tudo, nesse caso, inclui até mesmo o nada. O vazio não é realmente vazio de acordo com as leis da física quântica. O vácuo, no qual classicamente supõe-se que não haja literalmente “nada”, está repleto de coisas chamadas flutuações do vácuo – pequenas alterações de um campo eletromagnético, por exemplo, que geralmente chegam a zero com o tempo, mas podem se desviar disso por um breve momento.

Para alguns físicos, medir o espectro de pequenas ondas que compõem o espaço vazio que chamamos de vácuo é uma meta há décadas, mas até agora não havia uma boa maneira de fazer isso. Isso mudou nesta semana, quando físicos da ETH Zurich usaram habilmente pulsos de laser para entender a natureza quântica de um vácuo, estabelecendo um marco nas tentativas de medir o nada absoluto.

“As flutuações do campo eletromagnético no vácuo têm consequências claramente visíveis e, entre outras coisas, são responsáveis pelo fato de que um átomo pode emitir luz espontaneamente”, explica Ileana-Cristina Benea-Chelmus, física do Instituto de Eletrônica Quântica da ETH Zurich, em entrevista ao site da instituição

Nosso Universo é uma tela cheia de espaços vazios. Há uma textura nessa realidade nua que só podemos detectar. Mas este espaço, que geralmente consideramos completamente ausente de matéria e radiação, é um campo infinito de possibilidades do qual emergem algumas partículas. Existe um campo para cada partícula elementar, apenas esperando por energia suficiente para definir as principais características de sua existência.

Essas partículas são todas limitadas por uma regra estranha – à medida que algumas possibilidades aumentam, outras têm que encolher. Uma partícula pode estar em um local preciso, por exemplo, mas terá um momentum muito vago, ou vice-versa. Este princípio de incerteza não se aplica apenas às partículas, mas também ao próprio campo vago.

Durante um período prolongado de tempo, a quantidade de energia em um volume de espaço vazio é em média zero. Mas em determinados momentos não sabemos quanta energia será encontrada nestes espaços, o que resulta em um espectro de probabilidades.

Embora pareça aleatória, há correlações que podem nos dar informações sobre a natureza dessa ondulação. Para medir a maioria das coisas, os pesquisadores precisam estabelecer um ponto de partida. Infelizmente, isso é difícil de fazer com algo que já está em seu estado mais baixo de energia. 

“É um pouco como medir a força de um soco a partir de um punho sem movimento”, compara matéria do portal Science Alert. “Os detectores tradicionais de luz, como os fotodiodos, baseiam-se no princípio de que as partículas de luz – e, portanto, a energia – são absorvidas pelo detector. No entanto, a partir do vácuo, que representa o menor estado de energia de um sistema físico, nenhuma energia adicional pode ser extraída”, explica Benea-Chelmus.

Então, em vez de medir a transferência de energia de um campo vazio, a equipe planejou uma maneira de procurar a assinatura de suas sutis mudanças de probabilidade na polarização dos fótons. Ao comparar dois pulsos de laser de apenas um trilionésimo de segundo de comprimento, enviados através de um cristal super-frio em diferentes momentos e locais, a equipe pôde descobrir como o espaço vazio entre os átomos do cristal afetava a luz.

“Ainda assim, o sinal medido é absolutamente pequeno, e nós realmente tivemos que maximizar nossa capacidade experimental de medir campos muito pequenos”, diz o físico Jérôme Faist ao site do ETH Zurich.

Essa oscilação quântica era tão pequena que eles precisaram de até um trilhão de observações para cada comparação, apenas para ter certeza de que as medições eram legítimas. Essas medições minúsculas permitiram que eles determinassem o fino espectro de um campo eletromagnético em seu estado fundamental.

Controlar o que é efetivamente espaço vazio está se tornando um grande negócio na física quântica. Recentemente, outra equipe de físicos tentou colocar limites no ruído do vácuo à temperatura ambiente, a fim de melhorar a funcionalidade do detector de ondas gravitacionais LIGO.

Partículas virtuais – breves fantasmas de possíveis partículas que mal existem como incertezas em um campo – também são fundamentais para entender como os buracos negros se evaporam lentamente com o passar do tempo através da radiação de Hawking.

Segundo a matéria do ETH Zurich, os pesquisadores esperam que no futuro eles possam medir ainda mais os casos exóticos de flutuações de vácuo usando este método. “Na presença de fortes interações entre fótons e matéria, que podem ser alcançadas, por exemplo, dentro de cavidades ópticas, de acordo com cálculos teóricos, o vácuo deve ser preenchido com uma multiplicidade de chamados fótons virtuais. O método desenvolvido por Faist e seus colaboradores deve possibilitar o teste dessas previsões teóricas”, diz o texto.
Fonte: hypescience.com

Comentários

Postagens mais visitadas

Espaço sideral

Espaço sideral é todo o espaço do universo não ocupado por corpos celestes e suas eventuais atmosferas. É a porção vazia do universo, região em que predomina o vácuo. O termo também pode ser utilizado para se referir a todo espaço que transcende a atmosfera terrestre.
Conceituações
Em astronomia, usa-se a denominação "espaço externo" ou "espaço sideral" para fazer referência a todo espaço que transcende o espaço englobado pela atmosfera terrestre. O espaço sideral é frequentemente subdividido em três subespaços:
1.Espaço interplanetário designação usada sobretudo para se referir aos espaços existentes entre os planetas do nosso próprio sistema solar. Por extensão, inclui as distâncias entre os eventuais planetas de qualquer sistema estelar, inclusive o nosso.
2.Espaço interestelar designação usada para se referir às porções de quasi-vácuo existentes entre as estrelas. Refere-se sobretudo aos espaços entre as estrelas da nossa própria galáxia: a Via Láctea.
3.Espaço inte…

Conheça as 10 estrelas mais próximas da Terra

O sol é uma estrela entre milhões na nossa galáxia. Mas muitas outras estrelas próximas existem, inseridas nos seus próprios sistemas e possivelmente algumas delas até terão planetas a orbitá-las. A presente lista detalha as 10 estrelas mais próximas das Terra, cada uma com o seu próprio sistema solar e algumas pertencendo a sistemas binários. Algumas delas são anãs vermelhas, sendo que possuem uma magnitude tão baixa que apesar da sua proximidade à Terra não as conseguimos ver a olho nu. 1. O Sol Distância: 8 minutos/luz Obviamente, a estrela mais próxima da Terra é a estrela central no nosso sistema solar, nomeadamente o nosso sol. Ele ilumina diretamente a Terra durante o dia e é responsável pelo brilho da Lua durante a noite. Sem o Sol, a vida como a conhecemos não existiria aqui na Terra. 2. Alpha Centauri Distância: 4,24 anos-luz Alpha Centauri é na verdade um sistema composto por três estrelas. As estrelas principais no sistema de Alpha Centauri, chamadas de Alpha Centauri A e Alp…

Tipos de Estrelas

Anã branca: Estrela pequena e quente, que se acredita assinalar o estágio final de evolução de uma Estrela como o Sol. Uma Anã branca é mais ou menos do tamanho da Terra, embora contenha tanta matéria quanto o Sol. Essa matéria compacta é tão densa que um dedal dela pesaria uma tonelada ou mais. As Anãs brancas são tão fracas que mesmo as mais próximas de nós, que giram em torno de Sirius e de Procyon, só são vistas com telescópio. 
Anã vermelha: Estrela fria e fraca, de massa menor que a do Sol. As Anãs vermelhas são provavelmente as Estrelas mais abundantes em nossa galáxia, embora seja difícil observá-las em virtude de seu brilho fraco. Mesmo as Anãs vermelhas mais próximas, Próxima Centauri e a Estrela de Barnard, são invisíveis sem telescópio. 
Anã Marron: É um corpo celeste cuja massa é pequena demais para que ocorra uma fusão nuclear em seu núcleo, a temperature e a pressão do núcleo são insuficientes para que a fusão aconteça. Por isso, não pode ser considerada realmente uma est…

Os 7 elementos do universo

Fogo, terra, água e ar. Os filósofos gregos do século 6 a.C. acreditavam que esses 4 elementos formavam tudo o que existe. E eles não estavam tão errados assim. Hoje sabemos que você, as pedras, as estrelas, os seres extraterrestres ou qualquer outra coisa que dê para imaginar são o resultado de alguns poucos ingredientes, e da forma como eles interagem entre si. Para entender isso melhor, dê uma olhada para o seu dedo aí ao lado, que está segurando esta revista. Ele é composto de 99,9% de vazio. Não toca nada.

O que mantém esta revista na sua mão são partículas insanamente pequenas trocadas freneticamente entre os átomos dos seus dedos e os do papel. Os próprios átomos são menores do que manda o bom senso. Quer ver? Então olhe de novo para o seu dedo e observe a cutícula. Estique mentalmente esse pedacinho de pele até que ele fique do tamanho de um prédio de 100 andares. Se isso acontecesse, o átomo ficaria com a espessura de uma folha de papel. Acredite se quiser, nesse espaço exíguo…

Galéria de Imagens - Os 8 planetas de nosso Sistema Solar

Mercúrio é um planeta seco, quente e quase não tem ar. O planeta fica a quase 58 milhões de quilômetros do Sol e não tem lua nem atmosfera. Fica tão perto do Sol que as temperaturas da superfície podem chegar a 430oC. Assim como a Lua, o planeta é coberto por uma camada fina de minerais. Mercúrio também tem áreas de terra amplas e planas, precipícios e muitas crateras profundas como as da Lua. Cientistas dizem que o interior de Mercúrio e da Terra é feito de ferro.

Vênus é o segundo planeta mais próximo do Sol e é quase do mesmo tamanho da Terra. A superfície do planeta é cheia de montanhas, vulcões, cânions e crateras. O planeta é coberto por nuvens de ácido sulfúrico, uma substância mortal. Vênus também é um planeta muito quente: a temperatura na superfície é de 460oC. Os cientistas enviaram uma nave para explorar o planeta. A primeira a sonda passar perto do planeta foi a Mariner 2, em 1962.

A Terra é o terceiro mais próximo do Sol e o maior dos quatro planetas rochosos. É uma esfera…

Escuridão do Espaço - Por que o Espaço é Escuro?

Porqueo espaço é escuro? Uma questão, que parece simples, porém é realmente muito difícil de responder! É uma pergunta que muitos cientistas ponderaram por muitos séculos – incluindo Johannes Kepler, Edmond Halley, e médico-astrônomo alemão Wilhelm Olbers. Há duas questões que temos que considerar aqui, vamos começar é pela primeira e mais simples delas: Por que o céu é azul durante o dia aqui na Terra? Essa é uma pergunta que podemos responder facilmente. O céu diurno é azul porque a luz das moléculas próximas ao sol bate na atmosfera da Terra e é espalhada em todas as direções. A cor azul do céu é um resultado deste processo de espalhamento. À noite, quando essa parte da Terra está de costas para o Sol, o espaço parece negro porque não existe uma fonte próxima brilhante de luz, como o Sol, para ser espalhada. Se você estivesse na Lua, que não tem atmosfera alguma, o céu noturno seria negro e o diurno também. Você pode ver isso em fotografias tiradas durante a missão Apollo. Agora vam…