Estado raro da matéria é recriado e pode dar pistas sobre a origem do universo

estado novo matéria recriado

Pesquisadores da Universidade do Kansas, nos EUA, juntamente com uma equipe internacional de cientistas que trabalha no Grande Colisor de Hádrons, produziram plasma de quarks-glúons – um estado da matéria que os cientistas supõem que tenha existido no nascimento do universo -, com menos partículas do que se pensava possível. O material foi descoberto – na verdade, ele já havia sido reproduzido em laboratório antes, mas não com tão poucas partículas – pela colisão de prótons com núcleos de chumbo em alta energia dentro do detector Solenóide de Múon Compacto do Colisor. Os físicos têm apelidado o plasma resultante de “o menor líquido”.

RESULTADO INESPERADO
“Antes destes resultados experimentais, pensava-se que o meio criado pela colisão de um próton com chumbo seria demasiado pequeno para criar um plasma de quark-glúon”, diz Wang Quan, pesquisador de pós-doutorado que trabalha com a equipe do CERN, a Organização Europeia para a Pesquisa Nuclear.  Na verdade, essas colisões estavam sendo estudadas como uma referência para colisões de dois núcleos de chumbo, para explorar os aspectos não-quark-glúons-plasmáticos das colisões”, revela Wang. “A análise apresentada neste artigo indica, contrariamente às expectativas, que um plasma de quarks-glúons pode ser criado em colisões muito assimétricas entre prótons e chumbo”.

A descoberta inesperada lança nova luz sobre a física de alta energia. “Este é o primeiro trabalho que mostra claramente que várias partículas são correlacionadas entre si em colisões entre prótons e chumbo, semelhante ao que é observado em colisões chumbo-chumbo, onde o plasma de quarks-glúons é produzido”, relaciona Yen-Jie Lee, professor assistente de física no Instituto de Tecnologia de Massachussets (MIT), nos EUA. “Esta é provavelmente a primeira evidência de que a menor gota de plasma de quarks- glúons é produzida nesse tipo de colisão”.

A MATÉRIA E A ORIGEM DO UNIVERSO
Wang Quan descreve o plasma quark-glúon como um estado muito quente e denso de matéria de quarks e glúons não ligados, ou seja, não contidos dentro de núcleos individuais. “Acredita-se que este estado corresponde ao estado do universo logo após o Big Bang”, afirma. “A interação entre partons – quarks e glúons – dentro do plasma de quarks-glúons é forte, o que distingue o plasma quark-glúon de um estado gasoso onde se espera pouca interação entre as partículas constituintes. Enquanto a física de partículas de alta energia muitas vezes centra-se na detecção de partículas subatômicas, como o recentemente descoberto bóson de Higgs, a nova pesquisa de plasma de quarks-glúons examina o comportamento de um volume de tais partículas.

Wang diz que tais experiências podem ajudar os cientistas a entender melhor as condições cósmicas no instante após o Big Bang.  Embora acreditemos que o estado do universo um microssegundo após o Big Bang consistiu de um plasma quark-glúon, ainda há muito que nós não entendemos completamente sobre as propriedades deste estado da matéria”, pondera. “Uma das maiores surpresas das medições anteriores no Colisor Relativístico de Íons Pesados ​​no Brookhaven National Laboratory (EUA) foi o comportamento fluido do plasma de quarks e glúons. Ser capaz de formar um plasma quark-glúon em colisões de prótons e chumbo nos ajuda a definir melhor as condições necessárias para a sua existência”.
Fonte: Phys.org

Comentários

Postagens mais visitadas deste blog

Lua eclipsa Saturno

Um rejuvenescimento galáctico

Uma enorme bolha de rádio com 65.000 anos-luz rodeia esta galáxia próxima

Marte Passando

Observações exploram as propriedades da galáxia espiral gigante UGC 2885

O parceiro secreto de Betelgeuse, Betelbuddy, pode mudar as previsões de supernovas

Telescópio James Webb descobre galáxias brilhantes e antigas que desafiam teorias cósmicas:

Telescópio James Webb encontra as primeiras possíveis 'estrelas fracassadas' além da Via Láctea — e elas podem revelar novos segredos do universo primitivo

Espiral de lado

Astrônomos mapeiam o formato da coroa de um buraco negro pela primeira vez