Estudo recente mostra que o mistério dos discos de formação de planetas é explicado pelo magnetismos

pia17849

Os astrônomos dizem que tempestades magnéticas no gás orbitando jovens estrelas podem explicar um mistério que tem persistido desde antes de 2006.
Os pesquisadores, usaram o Telescópio Espacial Spitzer da NASA para estudar estrelas em desenvolvimento que tiveram um momento complicado para entender por que as estrelas emitem mais luz infravermelha do que o que era esperado. Os discos de formação de planetas, que circulam as jovens estrelas são aquecidos pela luz das estrelas e brilham na luz infravermelha, mas o Spitzer detectou uma luz infravermelha adicional vindo de uma fonte desconhecida. Uma nova teoria, com base em modelos tridimensionais da formação de discos de planetas sugere a resposta: O gás e a poeira suspensa acima dos discos em gigantescos lopps magnéticos como os vistos no Sol, absorvem a luz das estrelas e brilha intensamente na luz infravermelha.

“Se você pudesse de alguma fora para num desses discos de formação de planetas e olhar para a estrela no centro, através da atmosfera do disco, você poderia ver o que se pareceria com o pôr-do-Sol”, disse Neal Turner do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia. Os novos modelos descrevem melhor como o material de formação de planetas ao redor das estrelas é agitado, forjando seu caminho para a geração de futuros planetas, asteroides e cometas. Embora a ideia das atmosferas magnéticas nos discos de formação de planetas não seja nova, essa é a primeira vez que integraram isso ao mistério do excesso de luz infravermelha observado. De acordo com Turner e seus colegas, as atmosferas magnéticas são similares àquelas que ocorrem na superfície do nosso Sol, onde linhas do campo magnético em movimento geram tremendas proeminências solares em grandes loops.

As estrelas nascem a partir do colapso de pacotes de enormes nuvens de gás e poeira, em rotação à medida que eles mergulham sob a força da gravidade. À medida que a estrela cresce de tamanho, mais material cai da nuvem, e a rotação achata esse material num disco tubulento. No final, planetas se aglomeram na parte de fora desse material. Na década de 1980, a missão Infrared Astronomical Satellite, um projeto conjunto que incluía a NASA, começou a encontrar mais luz infravermelha do que era esperado ao redor das estrelas jovens. Usando dados de outros telescópios, os astrônomos colocaram junto a presença de discos empoeirados do material de formação de planetas. Mas eventualmente tem se tornado claro que os discos sozinhos não eram suficientes para gerar a luz infravermelha extra – especialmente no caso das estrelas com algumas vezes a massa do Sol.

Uma teoria introduziu a ideia de que ao invés de um disco, as estrelas eram circundadas por um gigantesco halo empoeirado, que interceptou a luz visível da estrela e irradiou novamente nos comprimentos de onda do infravermelho. Então, recentes observações feitas com telescópios baseados em Terra, sugerem que tanto um disco e um halo foram necessários. Finalmente, modelos computacionais tridimensionais da turbulência nos discos mostram que os discos devem ter uma superfície nebulosa, com camadas de gás de baixa densidade suportando campos magnéticos, similares à maneria como as proeminências solares suportam o campo magnético do Sol.

O novo trabalho junta todos esses pedaços calculando como a luz das estrelas cai através do disco e de sua atmosfera nebulosa. O resultado é que a atmosfera absorve e re-irradia uma quantidade suficiente de toda a luz infravermelha extra. “O material interceptado pela luz da estrela não localiza-se no halo, e num no disco tradicional, mas num disco de atmosfera suportado por campos magnéticos”, disse Turner. “Essas atmosferas magnetizadas foram previstas de se formarem à medida que o disco dirige gás para dentro se chocando com a estrela em crescimento”.

Nos próximos anos, os astrônomos testarão essas ideias sobre a estrutura dos discos atmosféricos usando gigantescos telescópios baseados em Terra de forma integrada como interferômetros. Um interferômetro combina e processa dados de múltiplos telescópios para mostrar detalhes mais nítidos do que um telescópio pode fazer sozinho. Os espectros do gás turbulento nos discos também virão do telescópio SOFIA da NASA, do Atacama Large Millimeter/submillimeter Array, o ALMA, no Chile, e do Telescópio Espacial James Webb da NASA depois de seu lançamento em 2018.

O JPL gerencia a missão do Telescópio Espacial Spitzer para o Science Mission Directorate da NASA em Washington. As operações científicas são conduzidas no Spitzer Science Center no Insitituto de Tecnologia da Califórnia em Pasadena. As operações da sonda são baseadas na Lockheed Martin Space System Company, em Littleton, no Colorado. Os dados são arquivados, no Infrared Science Archive abrigado no Infrared Processing and Analysis Center no Caltech. O Caltech gerencia o JPL para a NASA. Para mais informações sobre o Spitzer, visitem: http://spitzer.caltech.edu e http://www.nasa.gov/spitzer .
Fonte: Cienctec

Comentários

Postagens mais visitadas deste blog

Lua eclipsa Saturno

Um rejuvenescimento galáctico

Uma enorme bolha de rádio com 65.000 anos-luz rodeia esta galáxia próxima

Marte Passando

Observações exploram as propriedades da galáxia espiral gigante UGC 2885

O parceiro secreto de Betelgeuse, Betelbuddy, pode mudar as previsões de supernovas

Telescópio James Webb descobre galáxias brilhantes e antigas que desafiam teorias cósmicas:

Telescópio James Webb encontra as primeiras possíveis 'estrelas fracassadas' além da Via Láctea — e elas podem revelar novos segredos do universo primitivo

Espiral de lado

Astrônomos mapeiam o formato da coroa de um buraco negro pela primeira vez