Ciclo estear - A Vida das Estrelas (do começo ao fim)
Estrelas são basicamente bolas gigantes de plasma, inertes no espaço, e são constituídas em sua maioria de 71% de hidrogênio, 27% de hélio e com frações de outros elementos mais pesados.
As estrelas se formam em Nuvens Moleculares, a partir de instabilidades que frequentemente são geradas por choques provenientes de Supernovas. Após isso, ela começa a colapsar sob sua própria força gravitacional. Como a nuvem continua a contrair, ela começa a aumentar sua temperatura, causada pela energia gravitacional gerando energia cinética. Quanto mais ela contrai, mais a sua temperatura aumenta. Estrelas pré-sequência principal (protoestrelas) são cercadas por um disco de acreção, que futuramente, são responsáveis pela formação de seu sistema (como o Sistema Solar). Após bilhões de anos, elas perdem muita massa, e entram em colapso... a partir daí, o ciclo se repete.
A Evolução da estrela de acordo com sua massa
(1 M Sol é igual a 1 massa solar)
M < 0,08 M Sol
(1 M Sol é igual a 1 massa solar)
M < 0,08 M Sol
O limite de 0,08 M Sol estabelece o destino de uma Nuvem Molecular em contratação. Se a massa inicial da esfera gasosa resultante da contração de uma Nuvem Molecular for inferior a 0,08 M Sol ela jamais atingirá o estado de "estrela". O objeto formado, como já vimos, é uma "Anã Marrom". Assim, o valor de 0,08 M Sol é o limite que determina quem será estrela e quem será Anã Marrom. Veja a figura ao lado e entenda os estágios que ocorrem até que se forme uma Anã Marrom.
Entre 0,08 e 0,5 M Sol
Ficamos então com o intervalo de massa inicial situado entre 0,08 M Sol e 0,5 M Sol. Neste caso ocorre a queima de hidrogênio no centro da estrela com a consequente formação de um núcleo de hélio. Esta região central de hélio se torna degenerada e não consegue atingir a temperatura suficiente para dar início às reações nucleares com o hélio. Como consequência, ela não se transforma em uma estrela gigante. Seu estágio final de evolução é a formação de uma estrela Anã Branca, com núcleo de hélio. Veja a figura ao lado e entenda os estágios que ocorrem até que se forme uma Anã Branca.
Entre 0,5 e 1,0 M Sol
Aqui, a contração muito lenta do núcleo continua e a temperatura central da estrela aumenta um pouco. Sua superfície continua a expandir e, neste caso, a estrela irá se transformar em uma estrela gigante vermelha. Devido à sua pequena massa, a luminosidade da estrela é gerada pelo processo de convecção. Após ejetar a maior parte do seu envoltório, as estrelas neste intervalo de massa se tornam Anãs Brancas com núcleo de hélio (mas sem passar pelo estágio de Nebulosa Planetária). Veja a figura ao lado e entenda os estágios que ocorrem com as estrelas com este intervalo de massa.
Entre 1 e 2 M Sol
Nestas estrelas, o núcleo contrai e aquece bastante. Como o núcleo é formado por gás degenerado, ele não consegue expandir muito, embora haja um enorme aumento da temperatura central. Devido ao seu processo de expansão contínua, a estrela não consegue manter o seu envoltório e ejeta a sua maior parte no espaço, formando a tão famosa "Nebulosa Planetária". O que resta desta estrela é uma Anã Branca. Veja a figura ao lado e entenda os estágios que ocorrem com as estrelas com este intervalo de massa.Entre 2 e 10 M Sol
Muitas coisas podem acontecer com estrelas neste intervalo. Não só o núcleo, como toda a estrela está colapsando e seu envoltório está caindo na direção de seu pequeno núcleo endurecido. O material do envoltório da estrela irá "ricochetear" na superfície endurecida do núcleo estelar (bounce). eventualmente, a região central da estrela pode sobreviver a este fenômeno violento. A esta estrela residual, extremamente densa e pequena que sobrevive a esse fenômeno, damos o nome de "Estrela de Nêutrons". Veja a figura ao lado e entenda os estágios que ocorrem para se formar uma Estrela de Nêutrons.
Entre 10 e 20 M Sol
Já vimos que estrelas cuja massa inicial é maior do que 10 massas solares ao alcançarem os estágios finais de sua evolução passam por processos bastante violentos. A região central dessas estrelas gigantes sofrem um fortíssimo colapso gravitacional que irá levá-las a sofrerem uma enorme explosão. Quando isso acontece, essas estrelas gigantes lançam toda sua matéria no espaço interestelar e podem ser completamente destruidas, ou deixar uma estrela residual e compacta, chamada de Estrela de Nêutrons. Se a estrela inicial é muito grande, pode ocorrer que após sua explosão, o objeto residual deixado para trás ainda tenha muita massa. Neste caso, pode acontecer que o colapso gravitacional continue a agir nesse objeto residual de modo tão intenso que a pressão da matéria alí existente não consiga suportar esse esmagamento. Nesse caso, a estrela residual continua a colapsar, tão intensamente, que forma o famoso "Buraco Negro". Veja a figura ao lado e entenda os estágios que ocorrem até que se forme um Buraco Negro.
Supernova tipo I
Tempo de vida das estrelas
O tempo de vida de cada estrela está diretamente ligado com a sua massa. Vejamos alguns exemplos:
Fonte: Galeria do Meteorito


Comentários
Postar um comentário
Se você achou interessante essa postagem deixe seu comentario!