Reconstruindo a história da formação do Sistema Solar
Formação do Sistema Solar
Modelo mostra que a fase caótica que colocou os objetos nas órbitas que ocupam atualmente se iniciou nos primeiros 100 milhões de anos após a formação dos planetas gigantes.[Imagem: Nasa]
Proposta
pelo filósofo alemão Immanuel Kant (1724-1804) e desenvolvida pelo matemático
francês Pierre-Simon de Laplace (1749-1827), a hipótese tem recebido sucessivos
desenvolvimentos graças à formidável massa de dados observacionais, aportes
teóricos e recursos computacionais disponíveis atualmente.
Mas
esse processo não é linear, nem livre de controvérsias. Até pouco tempo atrás,
os cientistas acreditavam que o Sistema Solar havia adquirido as feições atuais
a partir de um período turbulento ocorrido cerca de 700 milhões de anos depois
de sua formação.
Mas
estudos recentes indicam uma estruturação bem mais precoce, que teria
acontecido na faixa dos primeiros 100 milhões de anos, e, com maior
probabilidade ainda, entre 10 e 60 milhões de anos.
Indícios
robustos a favor dessa estruturação precoce do Sistema Solar acabam de ser
apresentados por uma equipe com a participação de três pesquisadores da
Universidade Estadual Paulista (Unesp) em Guaratinguetá: Rafael de Sousa
Ribeiro, André Izidoro da Costa e Ernesto Vieira Neto.
Ressonância orbital
"A
grande quantidade de detalhes hoje conhecidos pelas observações do Sistema
Solar permite definir com precisão as trajetórias dos muitos corpos que orbitam
o Sol. E essa estrutura orbital nos possibilita escrever a história da formação
do sistema. A partir da nuvem de gás e poeira que circundava nossa estrela há
cerca de 4,6 bilhões de anos, os planetas gigantes foram formados em órbitas
mais próximas umas das outras e também mais próximas do Sol.
"Essas
órbitas eram também mais coplanares e mais circulares do que as atuais. E
estavam vinculadas entre si em sistemas dinâmicos ressonantes. Esses sistemas
estáveis são os resultados mais prováveis da dinâmica gravitacional de planetas
em formação com disco de gás protoplanetário," explicou Rafael.
"Os
quatro planetas gigantes - Júpiter, Saturno, Urano e Netuno - cresceram no
disco de gás e poeira em órbitas mais compactas. Seus movimentos exibiam uma
forte sincronia devido a cadeias de ressonância. Assim, enquanto Júpiter
completava três voltas ao redor do Sol, Saturno completava duas. E todos os
planetas estavam envolvidos nessa sincronia, produzida pela dinâmica do disco
gasoso primordial e pela dinâmica gravitacional dos próprios planetas,"
detalhou André.
As
cadeias de ressonância a que o pesquisador se refere ocorrem quando os objetos
em um sistema exercem forças gravitacionais periódicas uns sobre os outros,
fazendo com que o conjunto dos objetos se alinhe em um padrão.
A equipe também já construiu modelos para explicar a formação do planeta Marte. [Imagem: ESA]
Cinturão de Kuiper
Ao
longo de toda a região de formação do Sistema Solar externo, que inclui a zona
situada além das órbitas atuais de Urano e Netuno, o Sistema Solar possuía,
porém, uma grande população de planetesimais - pequenos corpos de rocha e gelo
que são considerados os blocos de construção dos planetas e os precursores dos
asteroides, cometas e satélites. E o disco exterior de planetesimais passou a
perturbar o equilíbrio gravitacional do conjunto.
Assim,
após a fase do gás, as ressonâncias foram quebradas. O sistema entrou em uma
etapa caótica, com interações violentas entre os planetas gigantes e até mesmo
com ejeções de planetas para o espaço exterior. "Plutão e seus vizinhos de
gelo foram lançados para a região onde se encontram atualmente, no Cinturão de
Kuiper. E o conjunto dos planetas migrou para órbitas mais distantes do
Sol," descreve Rafael.
A
existência do Cinturão de Kuiper foi proposta em 1951 pelo astrônomo holandês
Gerard Kuiper (1905-1973) e confirmada por observações astronômicas
posteriores. Trata-se de uma estrutura toroidal, semelhante a um pneu, formada
por milhares de pequenos corpos que orbitam o Sol, com uma diversidade de
órbitas nunca vista em outras regiões do Sistema Solar. Sua borda interior
localiza-se onde fica atualmente a órbita de Netuno, a 30 unidades astronômicas
de distância do Sol - sendo a unidade astronômica (ua) aproximadamente igual à
distância média da Terra ao Sol.
Acredita-se
que a borda exterior do Cinturão de Kuiper esteja a cerca de 50 ua do Sol,
embora o corpo celeste mais distante no Sistema Solar conhecido hoje esteja a
120 ua.
A modelagem é a melhor ferramenta disponível para esses estudos, mas os dados às vezes incomodam. Por exemplo, cálculos indicam que a água da Terra pode ser mais velha do que o Sol. [Imagem: Bill Saxton/NSF/AUI/NRAO]
Bombardeamento tardio da Lua
De
volta à quebra de sincronia e ao desencadeamento da fase caótica, a questão é
saber quando isso ocorreu: Se em uma etapa muito inicial, quanto o Sistema
Solar tinha 100 milhões de anos ou até menos, ou em uma fase posterior, quando
os planetas já tinham uma certa idade, provavelmente em torno de 700 milhões de
anos.
"Até
recentemente, a hipótese da instabilidade tardia predominava. A datação de
rochas da Lua, coletadas por astronautas do Projeto Apolo, sugere que elas
teriam sido criadas por impactos severos e simultâneos de vários asteroides e
cometas na superfície lunar. Este cataclismo é conhecido como 'Bombardeamento
Tardio da Lua'. E, se aconteceu na Lua, teria acontecido também na Terra e nos
demais planetas terrestres do Sistema Solar.
Como
no período de instabilidade planetária muito material, na forma de asteroides e
cometas, foi lançado em todas as direções do Sistema Solar, deduziu-se, a
partir da idade das rochas trazidas da Lua, que esse período caótico teria
ocorrido tarde. Porém, nos últimos anos, a história do 'Bombardeamento Tardio
da Lua' vem perdendo crédito," afirma Rafael.
Conforme
o pesquisador, se houvesse ocorrido, a catástrofe caótica tardia poderia ter
destruído a Terra e os demais planetas terrestres do Sistema Solar. Ou
provocado perturbações que os teriam colocado em órbitas totalmente diferentes
das atuais. Além disso, descobriu-se que as rochas trazidas pelo Projeto Apolo
foram produzidas por um único impacto - o que não seria de esperar se elas tivessem
sido originadas por uma grande instabilidade planetária tardia. Esta teria
gerado vários impactos diferentes, em função do espalhamento dos planetesimais
pelos planetas gigantes.
Há indícios da existência de uma "parede de hidrogênio" nos confins do Sistema Solar. [Imagem: Nasa/JHUAPL/SwRI/Magda Saina]
Quando ocorreu a instabilidade?
"Nosso
trabalho partiu da ideia de que a datação da instabilidade deve ser buscada de
maneira dinâmica. A única maneira de que essa instabilidade pudesse ter
ocorrido tardiamente seria se, no momento em que o gás acabou, houvesse uma
distância relativamente grande entre a borda interna do disco de planetesimais,
isto é, do disco de acreção planetária, e a órbita de Netuno. E essa distância
relativamente grande não se sustentou no âmbito de nossa simulação",
sublinha Rafael.
O
argumento é fácil de compreender. Quanto menor a distância, maior a influência
gravitacional entre Netuno e o disco de planetesimais. Portanto, mais precoce o
período de instabilidade. Inversamente, uma instabilidade tardia requer que a
distância seja grande.
"O
que fizemos foi esculpir, pela primeira vez, o disco de planetesimais
primordial. Para isso, tivemos que voltar à formação dos próprios planetas
gigantes de gelo, Urano e Netuno. A partir de um modelo construído pelo
professor Izidoro em 2015, realizamos simulações computacionais que mostraram
que a formação de Urano e Netuno pode ter sido oriunda de embriões planetários
com as massas de algumas Terras. As colisões gigantescas dessas superterras
explicariam, por exemplo, o fato de Urano ter seu eixo de rotação
tombado," diz o pesquisador.
Trabalhos
anteriores já haviam evidenciado a importância da distância entre a órbita de
Netuno e a borda interior do disco de planetesimais. Mas esses trabalhos
partiam de um modelo em que os quatro planetas gigantes já estavam formados.
Izidoro detalha as novidades do trabalho da equipe:
"A
novidade trazida pelo trabalho atual é que o modelo não se inicia com os
planetas completamente formados, mas considerou Urano e Netuno ainda em fase de
crescimento. E esse crescimento teria ocorrido a partir de duas ou três
colisões de objetos com até cinco vezes a massa da Terra.
"Imaginemos
uma situação em que Júpiter e Saturno já estejam formados, mas que, em vez de
Urano e Netuno, tenhamos de cinco a 10 superterras. Essas superterras seriam
forçadas pelo gás a entrar na mesma sincronia de Júpiter e Saturno. Porém, como
são numerosas, eles entrariam e sairiam, eventualmente colidindo. Devido às
colisões, seu número seria reduzido, possibilitando a sincronização. No final,
sobraram Urano e Netuno.
"Durante
a fase em que os dois gigantes de gelo estavam evoluindo no gás, o disco de
planetesimais também foi sendo consumido. Parte do material foi agregada a
Urano e Netuno, parte enviada para longe, para os confins do Sistema Solar.
Assim, o crescimento de Urano e Netuno definiu a posição da borda interna do
disco de planetesimais. O que sobrou desse disco compõe atualmente o Cinturão
de Kuiper. Este é basicamente uma relíquia que sobrou do disco de planetesimais
primordial, que era muito mais massivo," finalizou.
O grande mistério continua sendo a existência de planetas desconhecidos no Sistema Solar, chamados por enquanto de Planeta X, Planeta Nove, Planeta Dez etc. [Imagem: Heather Roper/LPL]
Formação da Terra e da Lua
O
modelo proposto é consistente com as órbitas atuais dos planetas gigantes e
também com a estrutura observada no Cinturão de Kuiper. É consistente ainda com
o movimento dos Troianos, asteroides que compartilham a órbita de Júpiter, e
que teriam sido capturados durante a quebra do sincronismo.
Em
trabalho publicado em 2017, os pesquisadores estudaram Júpiter e Saturno ainda
em formação, com seu crescimento contribuindo para o deslocamento do Cinturão
de Asteroides, um processo que se acredita estar envolvido com a origem da água
da Terra. O trabalho atual é uma espécie de continuação, que parte de um
estágio em que Júpiter e Saturno já estão completamente formados, mas com seus
movimentos ainda sincronizados. E descreve a evolução do Sistema Solar a partir
daí.
"A
interação gravitacional entre os planetas gigantes e o disco de planetesimais produziu
perturbações no disco de gás, que se propagaram como ondas. Essas ondas geraram
sistemas planetários compactos e síncronos. Quando o gás acabou, as interações
entre os planetas e o disco de planetesimais romperam o sincronismo e deram
origem à fase caótica.
"Levando
em conta tudo isso, descobrimos que não houve nenhuma condição para que a
distância entre a órbita de Netuno e a borda interna do disco de planetesimais
se tornasse suficientemente grande para sustentar a hipótese da instabilidade
tardia. Esta foi a grande contribuição do nosso trabalho: mostrar que a
instabilidade aconteceu no patamar da primeira centena de milhões de anos, e
que poderia ter ocorrido, por exemplo, antes da formação da Terra e da
Lua," concluiu Rafael.
Fonte:
Inovação Tecnológica
Comentários
Postar um comentário
Se você achou interessante essa postagem deixe seu comentario!