Astrônomos realizam a maior simulação computacional cosmológica de todos os tempos

Uma equipe internacional de astrónomos realizou o que se acredita ser a maior simulação computacional cosmológica de sempre, rastreando não só a matéria escura, mas também a matéria comum (como planetas, estrelas e galáxias), dando-nos uma ideia de como o nosso universo pode ter evoluído. 

 A imagem de fundo mostra a distribuição atual da matéria em uma fatia através da maior simulação do FLAMINGO, que tem um volume cúbico de 2,8 Gpc (9,1 bilhões de anos-luz) de lado. A luminosidade da imagem de fundo fornece a distribuição atual da matéria escura, enquanto a cor codifica a distribuição dos neutrinos. As inserções mostram três zooms consecutivos centrados no aglomerado de galáxias mais massivo; em ordem, estes mostram a temperatura do gás, a densidade da matéria escura e uma observação virtual de raios X (de Schaye et al. 2023). Crédito: Josh Borrow, equipe FLAMINGO e Virgo Consortium. Licenciado CC-BY-4.0

As simulações do FLAMINGO calculam a evolução de todos os componentes do universo – matéria comum, matéria escura e energia escura – de acordo com as leis da física. À medida que a simulação avança, surgem galáxias virtuais e aglomerados de galáxias. Três artigos foram publicados no Monthly Notices of the Royal Astronomical Society : um descrevendo os métodos, outro apresentando as simulações e o terceiro examinando quão bem as simulações reproduzem a estrutura em grande escala do universo.

Instalações como o Telescópio Espacial Euclides recentemente lançado pela Agência Espacial Europeia (ESA) e o JWST da NASA recolhem quantidades impressionantes de dados sobre galáxias, quasares e estrelas. Simulações como o FLAMINGO desempenham um papel fundamental na interpretação científica dos dados, conectando previsões de teorias do nosso universo aos dados observados.

De acordo com a teoria, as propriedades de todo o nosso universo são definidas por alguns números chamados “ parâmetros cosmológicos ” (seis deles na versão mais simples da teoria). Os valores destes parâmetros podem ser medidos com muita precisão de várias maneiras.

Um desses métodos baseia-se nas propriedades da radiação cósmica de fundo em micro-ondas (CMB), um fraco brilho de fundo que sobrou do universo primitivo. No entanto, estes valores não correspondem aos medidos por outras técnicas que se baseiam na forma como a força gravitacional das galáxias desvia a luz (lentes). Estas “tensões” poderão assinalar o fim do modelo padrão da cosmologia – o modelo da matéria escura e fria.

Simulações que também rastreiam matéria bariônica comum (também conhecida como matéria bariônica ) são muito mais desafiadoras e exigem muito mais poder de computação. Isto acontece porque a matéria comum – que representa apenas dezasseis por cento de toda a matéria do Universo – sente não só a gravidade, mas também a pressão do gás, o que pode fazer com que a matéria seja expelida das galáxias por buracos negros activos e supernovas no espaço intergaláctico.

A força destes ventos intergalácticos depende de explosões no meio interestelar e é muito difícil de prever. Além disso, a contribuição dos neutrinos, partículas subatómicas de massa muito pequena mas não precisamente conhecida, também é importante, mas o seu movimento não foi simulado até agora.

Os astrônomos completaram uma série de simulações de computador rastreando a formação de estruturas na matéria escura, matéria comum e neutrinos. Ph.D. o estudante Roi Kugel (Universidade de Leiden) explica: “O efeito dos ventos galácticos foi calibrado usando aprendizado de máquina, comparando as previsões de muitas simulações diferentes de volumes relativamente pequenos com as massas observadas de galáxias e a distribuição de gás em aglomerados de galáxias. ”

Os pesquisadores simularam o modelo que melhor descreve as observações de calibração com um supercomputador em diferentes volumes cósmicos e em diferentes resoluções. Além disso, variaram os parâmetros do modelo, incluindo a força dos ventos galácticos, a massa dos neutrinos e os parâmetros cosmológicos em simulações de volumes ligeiramente menores, mas ainda grandes.

A maior simulação utiliza 300 bilhões de elementos de resolução (partículas com massa de uma pequena galáxia) em um volume cúbico com bordas de dez bilhões de anos-luz. Acredita-se que esta seja a maior simulação computacional cosmológica com matéria comum já concluída. Matthieu Schaller, da Universidade de Leiden, disse: “Para tornar esta simulação possível, desenvolvemos um novo código, SWIFT, que distribui eficientemente o trabalho computacional em 30 mil CPUs”.

Fonte: phys.org

Comentários

Postagens mais visitadas deste blog

Galéria de Imagens - Os 8 planetas de nosso Sistema Solar

Galáxias no Rio

Messier 109

Galáxias na Fornalha

Tipos de Estrelas

M100

Poeira de meteoro

Gás galáctico escapa

Conheça as 10 estrelas mais próximas da Terra

Miranda revisitada