O universo está se expandindo mais rápido do que a teoria prevê – os físicos estão tentando explicar a incompatibilidade

Os astrónomos sabem há décadas que o Universo está em expansão. Quando usam telescópios para observar galáxias distantes, eles veem que essas galáxias estão se afastando da Terra.

A imagem de campo profundo do Telescópio Espacial James Webb mostra um universo cheio de galáxias brilhantes. Crédito: NASA/STScI 

Para os astrônomos, o comprimento de onda da luz que uma galáxia emite é maior quanto mais rápido a galáxia se afasta de nós. Quanto mais distante a galáxia está, mais sua luz se deslocou em direção aos comprimentos de onda mais longos no lado vermelho do espectro – portanto, maior será o “desvio para o vermelho”.

Como a velocidade da luz é finita, rápida, mas não infinitamente rápida, ver algo distante significa que estamos olhando para a coisa como ela era no passado. Com galáxias distantes e com alto desvio para o vermelho, estamos vendo a galáxia quando o universo estava em um estado mais jovem. Portanto, “alto redshift” corresponde aos primeiros tempos do universo, e “baixo redshift” corresponde aos últimos tempos do universo.

Mas à medida que os astrónomos estudaram estas distâncias, aprenderam que o Universo não está apenas a expandir-se – a sua taxa de expansão está a acelerar. E essa taxa de expansão é ainda mais rápida do que a teoria principal prevê que deveria ser, deixando cosmólogos como eu perplexos e à procura de novas explicações.

Energia escura e uma constante cosmológica

Os cientistas chamam a fonte dessa aceleração de energia escura. Não temos certeza do que impulsiona a energia escura ou como ela funciona, mas achamos que seu comportamento poderia ser explicado por uma constante cosmológica , que é uma propriedade do espaço-tempo que contribui para a expansão do universo.

Albert Einstein criou originalmente esta constante – ele marcou-a com um lambda na sua teoria da relatividade geral. Com uma constante cosmológica , à medida que o universo se expande, a densidade de energia da constante cosmológica permanece a mesma.

Imagine uma caixa cheia de partículas. Se o volume da caixa aumentar, a densidade das partículas diminuirá à medida que se espalham para ocupar todo o espaço da caixa. Agora imagine a mesma caixa, mas à medida que o volume aumenta, a densidade das partículas permanece a mesma.

Não parece intuitivo, certo? O fato de a densidade de energia da constante cosmológica não diminuir à medida que o universo se expande é, obviamente, muito estranho, mas essa propriedade ajuda a explicar a aceleração do universo.

Um modelo padrão de cosmologia

No momento, a principal teoria, ou modelo padrão , da cosmologia é chamada de "Lambda CDM ". Lambda denota a constante cosmológica que descreve a energia escura, e CDM significa matéria escura fria. Este modelo descreve tanto a aceleração do Universo nas suas fases finais como a taxa de expansão nos seus primeiros dias.

O universo está se expandindo mais rápido do que o previsto pelos modelos populares em cosmologia. Crédito: NASA

Especificamente, o Lambda CDM explica observações da radiação cósmica de fundo, que é o brilho residual da radiação de microondas de quando o universo estava em um “estado quente e denso ”, cerca de 300.000 anos após o Big Bang. Observações usando o satélite Planck , que mede a radiação cósmica de fundo , levaram os cientistas a criar o modelo Lambda CDM.

Ajustar o modelo Lambda CDM à radiação cósmica de fundo permite aos físicos prever o valor da constante de Hubble , que não é na verdade uma constante, mas uma medida que descreve a atual taxa de expansão do universo.

Mas o modelo Lambda CDM não é perfeito. A taxa de expansão que os cientistas calcularam medindo as distâncias às galáxias, e a taxa de expansão descrita no Lambda CDM usando observações da radiação cósmica de fundo , não se alinham. Os astrofísicos chamam essa discordância de tensão de Hubble.

A tensão de Hubble

Nos últimos anos, tenho pesquisado maneiras de explicar essa tensão do Hubble. A tensão pode indicar que o modelo Lambda CDM está incompleto e os físicos deveriam modificar o seu modelo, ou pode indicar que é hora dos pesquisadores apresentarem novas ideias sobre como o universo funciona. E novas ideias são sempre as coisas mais interessantes para um físico.

Uma maneira de explicar a tensão de Hubble é modificar o modelo Lambda CDM, alterando a taxa de expansão em baixo desvio para o vermelho, em momentos tardios do universo. Modificar o modelo desta forma pode ajudar os físicos a prever que tipo de fenómenos físicos podem estar a causar a tensão de Hubble.

Por exemplo, talvez a energia escura não seja uma constante cosmológica , mas sim o resultado da ação da gravidade de novas maneiras. Se for este o caso, a energia escura evoluiria à medida que o Universo se expande – e a radiação cósmica de fundo em micro-ondas , que mostra como era o Universo apenas alguns anos após a sua criação, teria uma previsão diferente para a constante de Hubble.

Mas a investigação mais recente da minha equipa descobriu que os físicos não conseguem explicar a tensão de Hubble apenas alterando a taxa de expansão no universo tardio – toda esta classe de soluções é insuficiente.

Desenvolvendo novos modelos

Para estudar que tipos de soluções poderiam explicar a tensão de Hubble, desenvolvemos ferramentas estatísticas que nos permitiram testar a viabilidade de toda a classe de modelos que alteram a taxa de expansão no universo tardio. Estas ferramentas estatísticas são muito flexíveis e utilizámo-las para combinar ou imitar diferentes modelos que poderiam potencialmente ajustar-se às observações da taxa de expansão do Universo e oferecer uma solução para a tensão de Hubble.

Os modelos que testamos incluem modelos de energia escura em evolução, onde a energia escura atua de forma diferente em diferentes momentos do universo. Também testamos modelos de interação entre energia escura e matéria escura, onde a energia escura interage com a matéria escura, e modelos de gravidade modificados, onde a gravidade atua de maneira diferente em diferentes momentos do universo.

Mas nada disso poderia explicar completamente a tensão do Hubble. Estes resultados sugerem que os físicos deveriam estudar o universo primitivo para compreender a fonte da tensão.

Fonte: Phys.org

Comentários

Postagens mais visitadas deste blog

Planeta Mercúrio

Um rejuvenescimento galáctico

Espiral de lado

Lua eclipsa Saturno

Alpha Camelopardalis: Estrela Veloz Cria Uma Onda de Choque

Messier 2

Ou a energia escura não é constante ou uma segunda força desconhecida está em ação...

Foto do James Webb prova que teoria astronômica sobre planetas está errada

Nosso Sistema Solar pode capturar um planeta? Cientistas dizem que sim

Como intensas explosões estelares forjaram os gigantes galácticos do universo